Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy

 This is a visualization of the atomic structure of the Au68 gold nanoparticle determined by electron microscopy. The colored spheres denote gold atoms in different crystal shells around the central axis (red). The background shows a collection of real-life electron microscopy data from which the single structure shown was reconstructed.

Credit: Copyright Maia Azubel, Stanford University.
This is a visualization of the atomic structure of the Au68 gold nanoparticle determined by electron microscopy. The colored spheres denote gold atoms in different crystal shells around the central axis (red). The background shows a collection of real-life electron microscopy data from which the single structure shown was reconstructed.

Credit: Copyright Maia Azubel, Stanford University.

Abstract:
Nanometre-scale gold particles are intensively investigated for application as catalysts, sensors, drug delivery devices, biological contrast agents and components in photonics and molecular electronics. Gaining knowledge of their atomic-scale structures, fundamental for understanding physical and chemical properties, has been challenging. Now, researchers at Stanford University, USA, have demonstrated that high-resolution electron microscopy can be used to reveal a three-dimensional structure in which all gold atoms are observed. The results are in close agreement with a structure predicted at the University of Jyväskylä, Finland, on the basis of theoretical modelling and infrared spectroscopy (see Figure). The research was published in Science on 22 August 2014.

A breakthrough in imaging gold nanoparticles to atomic resolution by electron microscopy

Helsinki, Finland | Posted on August 22nd, 2014

The revealed gold nanoparticle is 1.1 nm in diameter and contains 68 gold atoms organised in a crystalline fashion at the centre of the particle. The result was supported by small-angle X-ray scattering done in Lawrence Berkeley National Laboratory, USA, and by mass spectrometry done at Hokkaido University, Japan.

Electron microscopy is similar in principle to conventional light microscopy, with the exception that the wavelength of the electron beam used for imaging is close to the spacing of atoms in solid matter, about a tenth of a nanometre, in contrast with the wavelength of visible light, which is hundreds of nanometres. A crucial aspect of the new work is the irradiation of the nanoparticle with very few electrons to avoid perturbing the structure of the nanoparticle. The success of this approach opens the way to the determination of many more nanoparticle structures and to both fundamental understanding and practical applications.

The researchers involved in the work are Maia Azubel, Ai Leen Koh, David Bushnell and Roger D. Kornberg from Stanford University, Sami Malola, Jaakko Koivisto, Mika Pettersson and Hannu Häkkinen from the University of Jyväskylä, Greg L. Hura from Lawrence Berkeley National Laboratory, and Tatsuya Tsukuda and Hironori Tsunoyama from Hokkaido University. The work at the University of Jyväskylä was supported by the Academy of Finland. The computational work in Hannu Häkkinen's group was done at the HLRS-GAUSS centre in Stuttgart as part of the PRACE project "Nano-gold at the bio-interface".

####

For more information, please click here

Contacts:
Professor Roger D. Kornberg
Stanford University


Professor Hannu Häkkinen
University of Jyväskylä


Academy of Finland Communications
Communications Specialist Leena Vähäkylä
tel. +358 295 335 139
firstname.lastname(at)aka.fi

Copyright © Academy of Finland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

References: M. Azubel, J. Koivisto, S. Malola, D. Bushnell, G.L. Hura, A.L. Koh, H. Tsunoyama, T. Tsukuda, M. Pettersson, H. Häkkinen and R.D. Kornberg, "Electron microscopy of gold nanoparticles at atomic resolution", Science 345, 909 (2014):

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Tools

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project