Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Immune cells get cancer-fighting boost from nanomaterials

Abstract:
Scientists at Yale University have developed a novel cancer immunotherapy that rapidly grows and enhances a patient's immune cells outside the body using carbon nanotube-polymer composites; the immune cells can then be injected back into a patient's blood to boost the immune response or fight cancer.

Immune cells get cancer-fighting boost from nanomaterials

New Haven, CT | Posted on August 13th, 2014

As reported Aug. 3 in Nature Nanotechnology, the researchers used bundled carbon nanotubes (CNTs) to incubate cytotoxic T cells, a type of white blood cell that is important to immune system functions. According to the researchers, the topography of the CNTs enhances interactions between cells and long-term cultures, providing a fast and effective stimulation of the cytotoxic T cells that are important for eradicating cancer.

The researchers modified the CNTs by chemically binding them to polymer nanoparticles that held Interleukin-2, a cell signaling protein that encourages T cell growth and proliferation. Additionally, in order to mimic the body's methods for stimulating cytotoxic T cell proliferation, the scientists seeded the surfaces of the CNTs with molecules that signaled which of the patient's cells were foreign or toxic and should be attacked.

Over the span of 14 days, the number of T cells cultured on the composite nanosystem expanded by a factor of 200, according to the researchers. Also, the method required 1,000 times less Interleukin-2 than conventional culture conditions. A magnet was used to separate the CNT-polymer composites from the T cells prior to injection.

"In repressing the body's immune response, tumors are like a castle with a moat around it," says Tarek Fahmy, an associate professor of biomedical engineering and the study's principal investigator. "Our method recruits significantly more cells to the battle and arms them to become superkillers."

According to Fahmy, previous procedures for boosting antigen-specific T cells required exposing the patient's harvested immune cells to other cells that stimulate activation and proliferation, a costly procedure that risks an adverse reaction to foreign cells. The Yale team's use of magnetic CNT-polymer composites eliminates that risk by using simple, inexpensive magnets.

"Modulatory nanotechnologies can present unique opportunities for promising new therapies such as T cell immunotherapy," says Tarek Fadel, lead author of the research and a Yale postdoc who is currently a staff scientist with the National Nanotechnology Coordination Office. "Engineers are progressing toward the design of the next generations of nanomaterials, allowing for further breakthrough in many fields, including cancer research."

Two additional Yale engineering faculty contributed to this article: Gary Haller, the Henry Prentiss Becton Professor of Engineering and Applied Science and a professor of chemistry; and Lisa Pfefferle, the C. Baldwin Sawyer Professor of Chemical and Environmental Engineering. Other authors include Fiona Sharp, Nalini Vudattu, Ragy Ragheb, Justin Garyu, Dongin Kim, Enping Hong, Nan Li, Sune Justesen, and Kevan Herold.

####

For more information, please click here

Contacts:
Jim Shelton
(203) 432-3881

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Materials/Metamaterials/Magnetoresistance

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project