Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Focal blood-brain-barrier disruption with high-frequency pulsed electric fields

Pathologic and MRI evidence of blood-brain-barrier (BBB) disruption induced
by the VEIN (Vascular Enabled Integrated Nanosecond) pulse generation system.
Pathologic and MRI evidence of blood-brain-barrier (BBB) disruption induced by the VEIN (Vascular Enabled Integrated Nanosecond) pulse generation system.

Abstract:
Two, minimally invasive needle electrodes with 1 mm active length were spaced 4.0 mm apart and inserted into the right cerebral hemisphere 1.5 mm beneath the surface of the dura. A burst of 200, 500 ns duration square pulses of alternating polarity with a voltage-to-distance ratio of 250 V/cm were applied through the electrodes. In the case shown above, bursts were repeated once per second for 10 min. The extent of BBB disruption is shown by the dotted line surrounding Evans blue-albumin complex uptake on the gross brain slice preparation (left) and the corresponding fluorescent image (middle). Additionally, areas of BBB disruption appear as hyperintense (white) on the T1-weighted MRI exam, due to the uptake of a gadolinium-Evans blue tracer. Scale bar represents 5 mm. (Credit: John H. Rossmeisl Jr., Neurology and Neurosurgery, Virginia-Maryland Regional College of Veterinary Medicine and Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences).

Focal blood-brain-barrier disruption with high-frequency pulsed electric fields

Singapore | Posted on August 12th, 2014

A team of researchers from the Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences have developed a new way of using electricity to open the blood-brain-barrier (BBB). The Vascular Enabled Integrated Nanosecond pulse (VEIN pulse) procedure consists of inserting minimally invasive needle electrodes into the diseased tissue and applying multiple bursts of nanosecond pulses with alternating polarity. It is thought that the bursts disrupt tight junction proteins responsible for maintaining the integrity of the BBB without causing damage to the surrounding tissue. This technique is being developed for the treatment of brain cancer and neurological disorders, such as Parkinson's disease, and is set to appear in the upcoming issue of the journal TECHNOLOGY.

The BBB is a network of tight junctions that normally acts to protect the brain from foreign substances by preventing them from leaking out of blood vessels. However, it also limits the effectiveness of drugs to treat brain disease. Temporarily opening the BBB is a way to ensure that drugs can still be effective.

For the treatment of brain cancer, "VEIN pulses could be applied at the same time as biopsy or through the same track as the biopsy probe in order to mitigate damage to the healthy tissue by limiting the number of needle insertions," says Rafael V. Davalos, Ph.D, director of the Bioelectromechanical Systems Laboratory at Virginia Tech.

Additionally, the group shows that VEIN pulses can be applied without causing muscle contractions, which may dislodge the electrodes and require the use of a neuroblocker and general anesthesia. According to Christopher B. Arena, Ph.D., co-lead author on the paper with Paulo A. Garcia, Ph.D. and Michael B. Sano, Ph.D., "the fact that the pulses alternate in polarity helps to avoid unwanted, electrically induced movement. Therefore, it could be possible to perform this procedure without using a neuroblocker and with patients under conscious sedation. This is similar to how deep brain stimulation is implemented clinically to treat Parkinson's disease."

The team now plans to translate the technology into clinical applications through a university spin-out company, VoltMed, Inc.

Additional co-authors of the TECHNOLOGY paper are John D. Olson from the Center for Biomolecular Imaging at Wake Forest, and Thomas Rogers-Cotrone and John H. Rossmeisl Jr. from the Neurology and Neurosurgery department at the Virginia-Maryland Regional College of Veterinary Medicine.

This research was supported in part by grants from the National Science Foundation (CBET 1055913 and I-Corps 1265105), the Golfers Against Cancer, and the Center for Biomolecular Imaging in the Wake Forest School of Medicine.

Corresponding authors for this study in TECHNOLOGY are John H. Rossmeisl Jr., and Michael B. Sano, .

####

About World Scientific
World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research and professional communities. The company publishes about 500 books annually and more than 120 journals in various fields. World Scientific collaborates with prestigious organisations like the Nobel Foundation, US National Academies Press, as well as its subsidiary, the Imperial College Press, amongst others, to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit www.worldscientific.com.

For more information, please click here

Contacts:
Philly Lim

65-646-65775

Copyright © World Scientific

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Atomic force microscopy in 3D July 5th, 2024

Aston University researcher receives £1 million grant to revolutionize miniature optical devices May 17th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project