Home > Press > Moore quantum materials: Recipe for serendipity - Moore Foundation grant will allow Rice physicist to explore quantum materials
![]() |
Emilia Morosan CREDIT: Jeff Fitlow/Rice University |
Abstract:
Thanks to a $1.5 million innovation award from the Gordon and Betty Moore Foundation, Rice University physicist Emilia Morosan is embarking on a five-year quest to cook up a few unique compounds that have never been synthesized or explored. Morosan is no ordinary cook; her pantry includes metals, oxides and sulfides, and her recipes produce superconductors and exotic magnets.
Morosan, associate professor of physics and astronomy, of chemistry and of materials science and nanoengineering, has been named a Moore Foundation Materials Synthesis Investigator. Her lab specializes in the design, discovery and synthesis of compounds with unconventional electronic and magnetic ground states. She said the Moore funding, which was provided through the foundation's Emergent Phenomena in Quantum Systems Initiative, allows the freedom for experiments that might cause other funding agencies to balk.
"For many years, the United States was the undisputed leader in materials synthesis, but governmental funding has fallen dramatically at a time when Europe and Asia have invested heavily," Morosan said. "With this new initiative, I think the Moore Foundation is filling a stringent need for more exploratory materials synthesis research that doesn't fit with the well-defined rationale of traditional funding agencies."
Morosan stressed that her research is focused on elucidating the fundamental properties of materials with emergent behavior.
"I know it can be a turnoff when people ask, 'What is this good for?' and we say, 'This is more fundamental than applicable,'" she said. "But at the root of all engineering applications is some fundamental concept that was discovered and that was only applied after a library of knowledge was built up around that and many other discoveries."
Morosan is well-aware that the initial act of scientific discovery can involve serendipity -- the "failure" of synthesizing a never-before-seen compound while targeting a totally different one. That happened in her lab in 2009.
Following the discovery of the first iron-based high-temperature superconductors, Morosan's group was attempting to make a compound of cerium, iron and arsenic that contained a ratio of 1-2-2 -- one cerium ion to each two iron and two arsenic ions.
Many quantum materials often have similar compositions, even when the elements differ. For example, the discovery of the first "heavy fermion" in 1979 -- a find that preceded high-temperature superconductivity by seven years -- contained one ion of cerium for two copper and two silicon ions. This 1-2-2 ratio has been found repeatedly over the years in many other quantum materials, including other heavy fermions as well as high-temperature superconductors.
Morosan and her team knew something was amiss as soon as the 2009 synthesis was completed.
"What we were trying to make should have looked like plate crystals," she said. "What we ended up with were needle-like crystals."
Upon further examination, her team learned that their mystery material had both intriguing physical properties and a hitherto unreported 1-4-3 atomic ratio. The structure remains unique; it has yet to be found in another compound, despite years of worldwide effort.
Morosan said the Moore funding will allow her to pursue several lines of research, and one of these will be a "fishing expedition" that aims to systematically explore whole families of little-studied materials. She said the hope is to combine knowledge, intuition and technical skill to help foster the chances for serendipity.
"There are phase spaces and materials families that have been overlooked for years, for a variety of reasons," she said. "I think there's a lot to be found at the bottom of the sea, in these unexplored places.
"It is a gamble because I don't know if these compounds will form, and if they do, I don't know if the physics will be interesting. But if I'm allowed some freedom to try, then I am confident we will learn a great deal and will find really interesting new physics. And even if we don't, and we simply make progress toward answering some of the critical questions in condensed matter physics, then it will still be a success."
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,920 undergraduates and 2,567 graduate students, Rice's undergraduate student-to-faculty ratio is just over 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is highly ranked for best quality of life by the Princeton Review and for best value among private universities by Kiplinger's Personal Finance.
Follow Rice News and Media Relations on Twitter @RiceUNews.
For more information, please click here
Contacts:
Jade Boyd
713-348-6778
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
More information about the Moore Foundation's quantum materials program is available at:
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Materials/Metamaterials/Magnetoresistance
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Atomic force microscopy in 3D July 5th, 2024
Quantum nanoscience
Researchers succeed in controlling quantum states in a new energy range December 13th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |