Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Japanese gold leaf artists worked on a nano-scale: Study demonstrates X-ray fluorescence spectroscopy is a non-destructive way to date artwork

Abstract:
Ancient Japanese gold leaf artists were truly masters of their craft. An analysis of six ancient Namban paper screens show that these artifacts are gilded with gold leaf that was hand-beaten to the nanometer scale. Study leader Sofia Pessanha of the Atomic Physics Center of the University of Lisbon in Portugal believes that the X-ray fluorescence technique her team used in the analysis could also be used to date other artworks without causing any damage to them. The results are published in Springer's journal Applied Physics A: Material Science and Processing.

Japanese gold leaf artists worked on a nano-scale: Study demonstrates X-ray fluorescence spectroscopy is a non-destructive way to date artwork

Heidelberg, Germany | Posted on July 3rd, 2014

Gold leaf refers to a very thin sheet made from a combination of gold and other metals. It has almost no weight and can only be handled by specially designed tools. Even though the ancient Egyptians were probably the first to gild artwork with it, the Japanese have long been credited as being able to produce the thinnest gold leaf in the world. In Japanese traditional painting, decorating with gold leaf is named Kin-haku, and the finest examples of this craft are the Namban folding screens, or byobu. These were made during the late Momoyama (around 1573 to 1603) and early Edo (around 1603 to 1868) periods.

Pessanha's team examined six screens that are currently either part of a museum collection or in a private collection in Portugal. Four screens belong to the Momoyama period, and two others were decorated during the early Edo period. The researchers used various X-ray fluorescence spectroscopy techniques to test the thickness and characteristics of the gold layers. The method is completely non-invasive, no samples needed to be taken, and therefore the artwork was not damaged in any way. Also, the apparatus needed to perform these tests is portable and can be done outside of a laboratory.

The gilding was evaluated by taking the attenuation or weakening of the different characteristic lines of gold leaf layers into account. The methodology was tested to be suitable for high grade gold alloys with a maximum of 5 percent influence of silver, which is considered negligible.

The two screens from the early Edo period were initially thought to be of the same age. However, Pessanha's team found that gold leaf on a screen kept at Museu Oriente in Lisbon was thinner, hence was made more recently. This is in line with the continued development of the gold beating techniques carried out in an effort to obtain ever thinner gold leaf.

"This simple comparison allowed establishing a timeline between the manufacture of two pieces attributed to the same period, proving that X-ray fluorescence techniques can be an important asset in the dating of artworks," says Pessanha.

####

For more information, please click here

Contacts:
Joan Robinson

49-622-148-78130

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference: Pessanha, S. et al (2014). Comparison of gold leaf thickness in Namban folding screens using X-ray fluorescence, Applied Physics A: Material Science and Processing. DOI 10.1007/s00339-014-8531-z

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Discoveries

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Materials/Metamaterials/Magnetoresistance

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024

FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Human Interest/Art

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

Drawing data in nanometer scale September 30th, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Graphene nanotubes revolutionize touch screen use for prosthetic hands August 3rd, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project