Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > JPK reports on the use of the NanoWizard AFM system for force measurements at Monash University

Student Thomas McCoy of the user group of JPK’s NanoWizard system at Monash University
Student Thomas McCoy of the user group of JPK’s NanoWizard system at Monash University

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, reports on the use of the NanoWizard® AFM system in the School of Chemistry at Monash University in Australia.

JPK reports on the use of the NanoWizard AFM system for force measurements at Monash University

Berlin, Germany | Posted on June 18th, 2014

Dr Rico Tabor leads the Soft Materials and Colloids Group in the School of Chemistry at Monash University. Research focuses on several areas. At a fundamental level, the group is interested in exploring the interactions that cause aggregation and assembly, in everything from nanoparticles, droplets and graphene to proteins and cells. This ranges from quite fundamental studies of things like the van der Waals force (of quantum origin) and electrical double-layer interactions, right through to unwinding protein molecules and the forces experienced by emulsion droplets armoured with 2D nanomaterials. In particular, they are exploring ways in which such forces can be exploited, such as whether changing something as simple as pH can cause particles or drops to coalesce or stick together. In other circumstances, more 'advanced' stimuli such as light or magnetic fields are used to induce the chemical or physical effects that are required.

Dr Tabor describes some of the techniques that are used: "We use many tools frequently from simple things like surface tension all the way up to large-scale facilities such as the Australian Synchrotron and the neutron facilities at the Bragg Institute. However, AFM is the only technique that can tell us directly about forces in such a wide range of systems. And this information is central in understanding why things are stable, or why they phase separate. If we can understand the forces between our dispersed items, be they particles, drops or graphene sheets, then we can design materials that have the characteristics that we want. Although there are other force measuring techniques, for the family of materials that we are interested in - drops, particles, bubbles, etc., AFM is the gold standard in terms of applicability, versatility and precision. With AFM, you can explore so much more: deformation, mechanics, interactions, etc. and in almost any system. Some things such as biological molecules, surfactant assemblies and other soft, labile materials are almost impossible to image in electron microscopy, but with judicious cantilever choice, the AFM often comes to the rescue!"

So why did Dr Tabor choose the NanoWizard® AFM from JPK? "I have used several commercial AFMs but, for me, JPK AFMs appealed because of the durability when working in liquids - most of our systems are wet at one stage or another. We can just drop our sample into a Petri dish and off we go! The hassle of the fiddly liquid cells found with other AFMs used to frustrate me no end. The versatility of the JPK is a great bonus, and the setup time is so fast - I can be ready and imaging within 5 minutes, which I think beats any of the other comparable models. Combine this with automated force curve acquisition and analysis, and you have a powerful system for force measurement."

For more details about JPK's family of NanoWizard® AFM systems and their applications for the bio & nano sciences, please contact JPK on +49 30533112070, visit the web site: www.jpk.com/ or see more on Facebook: www.jpk.com/facebook and on You Tube: www.youtube.com/jpkinstruments.

####

About JPK Instruments
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK’s success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo, Shanghai (China) and Paris (France), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For more information, please click here

Contacts:
JPK Instruments AG
Bouchéstrasse 12
Haus 2, Aufgang C
Berlin 12435
Germany
T +49 30533112070
F +49 30 5331 22555
http://www.jpk.com/


Talking Science Limited
39 de Bohun Court
Saffron Walden
Essex CB10 2BA
United Kingdom
T +44(0)1799 521881
M +44(0)7843 012997
http://www.talking-science.com/

Copyright © JPK Instruments

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project