Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Developing an improved liposuction technique that melts fat

Melting fat away could one day become a reality with a new liposuction technique now under development.
Credit: Ljupco/iStock/Thinkstock
Melting fat away could one day become a reality with a new liposuction technique now under development.

Credit: Ljupco/iStock/Thinkstock

Abstract:
Although liposuction is one of the most common and well-established cosmetic surgery procedures in the U.S., it still has its drawbacks. But a new biomedical start-up says it may have found a novel way to improve the procedure using gold nanoparticles to literally melt fat, reports Chemical & Engineering News (C&EN), the weekly news magazine of the American Chemical Society.

Developing an improved liposuction technique that melts fat

Washington, DC | Posted on June 18th, 2014

Lauren K. Wolf, an associate editor at C&EN, explains that during the most common type of liposuction procedure, a surgeon inserts a sharp-edged needle through an incision, moves it back and forth to break up fat cells and then vacuums them out. The problem is the procedure isn't selective, and sometimes connective tissue and nerves get removed along with the fat cells. Liposuction patients often suffer from bruising, long recovery times and lumpiness that has to be corrected with a second procedure. To address the surgery's problems, a nanomedicine expert and her brother, who is a plastic and reconstructive surgeon, teamed up to try a different approach.

The duo, Adah and Khalid Almutairi, drew on some of the latest research looking into gold nanoparticles' ability to destroy cancer cells when exposed to infrared light. They wondered whether they could inject the same material into liposuction patients, light up selected areas with an infrared beam to melt the fat rather than mechanically breaking it up, and then suction out the cells. Fat melts at a low enough temperature that connective tissue and nerve cells could be spared damage, they say. A new firm, eLux Medical, has licensed the technique, now called NanoLipo. Animal trials are currently underway, and human clinical studies could begin later this year, the company says.

####

About American Chemical Society
The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world’s largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

For more information, please click here

Contacts:
General Inquiries: Michael Bernstein

202-872-6042

Science Inquiries: Katie Cottingham, Ph.D.

301-775-8455

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

“Liposuction Goes Nano”

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project