Home > Press > Researchers find weird magic ingredient for quantum computing
This geometric figure illustrates the concept of magic states and their relation to contextuality. The triangular region contains quantum states that are not magic and do not exhibit contextuality. States outside the triangle do exhibit contextuality and may be useful as a resource in the magic-state model of quantum computing.
Credit: University of Waterloo |
Abstract:
A form of quantum weirdness is a key ingredient for building quantum computers according to new research from a team at the University of Waterloo's Institute for Quantum Computing (IQC).
In a new study published in the journal Nature, researchers have shown that a weird aspect of quantum theory called contextuality is a necessary resource to achieve the so-called magic required for universal quantum computation.
One major hurdle in harnessing the power of a universal quantum computer is finding practical ways to control fragile quantum states. Working towards this goal, IQC researchers Joseph Emerson, Mark Howard and Joel Wallman have confirmed theoretically that contextuality is a necessary resource required for achieving the advantages of quantum computation.
"Before these results, we didn't necessarily know what resources were needed for a physical device to achieve the advantage of quantum information. Now we know one," said Mark Howard, a postdoctoral fellow at IQC and the lead author of the paper. "As researchers work to build a universal quantum computer, understanding the minimum physical resources required is an important step to finding ways to harness the power of the quantum world."
Quantum devices are extremely difficult to build because they must operate in an environment that is noise-resistant. The term magic refers to a particular approach to building noise-resistant quantum computers known as magic-state distillation. So-called magic states act as a crucial, but difficult to achieve and maintain, extra ingredient that boosts the power of a quantum device to achieve the improved processing power of a universal quantum computer.
By identifying these magic states as contextual, researchers will be able to clarify the trade-offs involved in different approaches to building quantum devices. The results of the study may also help design new algorithms that exploit the special properties of these magic states more fully.
"These new results give us a deeper understanding of the nature of quantum computation. They also clarify the practical requirements for designing a realistic quantum computer," said Joseph Emerson, professor of Applied Mathematics and Canadian Institute for Advanced Research fellow. "I expect the results will help both theorists and experimentalists find more efficient methods to overcome the limitations imposed by unavoidable sources of noise and other errors."
Contextuality was first recognized as a feature of quantum theory almost 50 years ago. The theory showed that it was impossible to explain measurements on quantum systems in the same way as classical systems.
In the classical world, measurements simply reveal properties that the system had, such as colour, prior to the measurement. In the quantum world, the property that you discover through measurement is not the property that the system actually had prior to the measurement process. What you observe necessarily depends on how you carried out the observation.
Imagine turning over a playing card. It will be either a red suit or a black suit - a two-outcome measurement. Now imagine nine playing cards laid out in a grid with three rows and three columns. Quantum mechanics predicts something that seems contradictory - there must be an even number of red cards in every row and an odd number of red cards in every column. Try to draw a grid that obeys these rules and you will find it impossible. It's because quantum measurements cannot be interpreted as merely revealing a pre-existing property in the same way that flipping a card reveals a red or black suit.
Measurement outcomes depend on all the other measurements that are performed - the full context of the experiment.
Contextuality means that quantum measurements can not be thought of as simply revealing some pre-existing properties of the system under study. That's part of the weirdness of quantum mechanics.
###
The Irish Research Council (IRC) as part of the Empower Fellowship program financially supported Mark Howard. The study's authors acknowledge financial support from CIFAR and the Government of Canada through NSERC.
####
For more information, please click here
Contacts:
Nick Manning
519-888-4451
Copyright © University of Waterloo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||