Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Iranian Scientists Study Photocatalytic Performance of Various Zinc Oxide Nanostructures

Abstract:
Iranian researchers from Shahid Chamran University of Ahvaz produced a non-toxic nanocatalyst that has highly appropriate performance in the degradation of pollutants.

Iranian Scientists Study Photocatalytic Performance of Various Zinc Oxide Nanostructures

Tehran, Iran | Posted on June 9th, 2014

The nanocatalyst was produced through a simple and cheap method. Results of the research can be used in the production of water and air purification filters.

In recent year, researchers have paid special attention to zinc oxide due to its non-toxicity, low price, physical stability, and high chemical performance. In addition, zinc oxide has higher efficiency in photocatalytic reduction of some pollutants than other commercial materials. This research tries to study various zinc oxide nanostructures and their photocatalytic properties through a simple method. Results of the research confirm the difference in the photocatalytic performance of different produced nanostructures.

Generally speaking, photocatalytic activity is higher in nanodisks and nanoheets than in nanoparticles, and it is higher in nanoparticles than in nanowires. Moreover, many of the produced samples had better photocatalytic properties than titania nanoparticles, which indicates the high performance of zinc oxide.

According to the results, the best photocatalytic activity was obtained in the sample produced through thermal decomposition of zinc acetate dehydrate for five hours in vapor phase. The sample decomposes more than 72% and 99% of methylene blue color in the first 30 and 120 minutes, respectively. There was also observed logical relation between the amount of color adsorption by zinc oxide nanoparticles in the first 30 minutes in the absence of UV radiation and the photocatalytic activity. Therefore, it can be concluded that many of the samples are in agreement with Langmuir-Hinshelwood Model.

Results of the research have been published in Ceramics International, vol. 40, issue 5, January 2014, pp. 6605-6610.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Chemistry

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Single-atom catalysts change spin state when boosted by a magnetic field June 4th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Environment

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

New gel could boost coral reef restoration: The substance, applied to surfaces as a coating, improved coral larvae settlement by up to 20 times in experiments compared to untreated surfaces May 16th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project