Home > Press > The quantum mechanisms of organic devices for alternative solar panels are revealed
Photos of the simulation of the evolution in the transfer of charge from the polymer to the fullerene in femtoseconds |
Abstract:
Silicon panel-based technology requires a very costly, contaminating manufacturing process, while organic photovoltaic (OPV) devices have been positioned as one of the most attractive alternatives as a source of solar energy.
This research has made a ground-breaking discovery because it is the first time that the quantum mechanisms that trigger the photovoltaic function of these devices have been deciphered. Angel Rubio, Professor of Condensed Matter Physics at the Faculty of Chemistry of the UPV/EHU-University of the Basque Country, director of the Nano-Bio Spectroscopy Group, and associate researcher of the Donostia International Physics Center (DIPC), has participated in the research conducted in this field in collaboration with various centres in Germany, Italy and France. The research is being published in the prestigious journal Science.
These organic devices use a photosensitive polymer linked to a carbon nanostructure that functions as a current collector. When light falls on the device, the polymer traps the particles of light and induces the ultrafast transmission of electrons to the nanostructure through an electron impulse in the order of femtoseconds (fs), in other words, 10-15 seconds. Evidence was recently found to confirm this ultrafast transfer, but the research of Rubio and his team has gone a step further because it has succeeded in deciphering the element mechanism that unleashes the electron transfer between the polymer and the nanostructure. The first-principal simulations in a simplified model predicted that the coherent vibrations are the ones that dictate the periodic transfer of charge between the polymer and the fullerene.
The group involved in the experiment confirmed this prediction by studying the optical response of a common material comprising a polymer and a by-product of the fullerene (a conventional nanostructure with a spherical shape) by means of high-resolution temporal spectroscopy.
The results confirmed that the coupling of the vibrations of the polymer and the fullerene bring about the electron transfer in a coherent and ultrafast way (≈23 fs), without any need to accept incoherent processes that are manifested in slower transfers (100 fs). These studies demonstrate the critical role played by quantum coherence in organic photovoltaic devices.
The research, due to be published this week in the prestigious journal Science, offers a vision that is consistent with element quantum processes in organic photovoltaic devices and constitutes a significant step forward in this field. "This research opens up the means for a substantial and controlled improvement in organic devices for photovoltaic applications," pointed out Prof Ángel Rubio.
Full bibliographic information
S. Maria Falke, C.A. Rozzi, D. Brida, M. Amato, A. De Sio, A. Rubio, G. Cerullo, E. Molinari, C. Lienau. Coherent ultrafast charge transfer in an organic photovoltaic blend. Science 30 May 2014: Vol. 344 no. 6187 pp. 1001-1005 DOI: 10.1126/science.1249771
####
About University of the Basque Country
The University of the Basque Country is the largest Higher Education Institution in the Basque Country. It is a public, all-inclusive establishment structured in 3 campuses (corresponding to the 3 historical territories of the region) and counts 31 faculties and schools. A total 45,000 students take courses leading to one of our 70 Bachelor´s Degrees or 150 postgraduate programmes. Up to 70 % of all research projects carried out in the Basque Country are developed within our institution. Our constant promotion of age-old Basque language has made it possible for almost all courses to be offered in both official languages (Spanish and Basque), and we are furthermore introducing a number of courses taught in English and French. The Euskampus project, probably the most ambitious our University has ever implemented, was deemed Campus of International Excellence in 2010; the University of the Basque Country aims to become one of the leading European Universities.
For more information, please click here
Contacts:
Matxalen Sotillo
Copyright © AlphaGalileo
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Solar/Photovoltaic
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||