Home > Press > Acrylamide exposure impairs blood-cerebrospinal fluid barrier function
Abstract:
The blood-brain barrier prevents xenobiotics from entering the central nervous system. Growing evidence indicates that neurotoxins, such as tributyltin, manganese and nanoparticles, may disrupt the function of the blood-brain and blood-cerebrospinal fluid (CSF) barriers.
Previous studies show that chronic acrylamide exposure leads to central and peripheral neuropathy. However, very few studies have focused on the effects of acrylamide exposure on these barriers. Prof. Yanshu Zhang and co-workers from Hebei United University in China found that acrylamide exposure damages the blood-cerebrospinal fluid barrier and impairs secretory and transport functions. These changes may underlie acrylamide-induced neurotoxicity. The research achievements have been published in the Neural Regeneration Research (Vol. 9, No. 5, 2014).
###
Article: " Acrylamide exposure impairs blood-cerebrospinal fuid barrier function," by Xue Yao1, Licheng Yan1, Lin Yao2, Weijun Guan3, Fanxu Zeng1, Fuyuan Cao2, Yanshu Zhang1 (1 College of Public Health, Hebei United University, Tangshan, Hebei Province, China; 2 Experimental Animal Center, Hebei United University, Tangshan, Hebei Province, China; 3 Key Laboratory of Hebei Health and Safety on Coal Industry, Hebei United University, Tangshan, Hebei Province, China)
Yao X, Yan LC, Yao L, Guan WJ, Zeng FX, Cao FY, Zhang YS. Acrylamide exposure impairs blood-cerebrospinal fluid barrier function. Neural Regen Res. 2014;9(5):555-560
####
For more information, please click here
Contacts:
Meng Zhao
86-138-049-98773
Copyright © Neural Regeneration Research
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |