Home > Press > New insight into thermoelectric materials may boost green technologies: A U of Miami physicist and his collaborators find remarkable thermoelectric properties for a metal that may impact the search for materials useful in power generation, refrigeration or energy detection
![]() |
Lithium purple-bronze (LiPB) is a thermoelectric material comprised of aligned conducting, zig-zag chains of molybdenum and oxygen (left image, pink and white circles with green bonds). When an electric current was applied in a direction slightly misaligned with the chains (depicted as gray lines, right image), heat flowed perpendicular to the current, a phenomenon known as the transverse Peltier effect. The efficiency of this effect in LiPB was among the largest known for a single compound.
Credit: Dr. Joshua Cohn, University of Miami |
Abstract:
Thermoelectric materials can turn a temperature difference into an electric voltage. Among their uses in a variety of specialized applications: generating power on space probes and cooling seats in fancy cars.
University of Miami (UM) physicist Joshua Cohn and his collaborators report new surprising properties of a metal named lithium purple-bronze (LiPB) that may impact the search for materials useful in power generation, refrigeration, or energy detection. The findings are published in the journal Physical Review Letters.
"If current efficiencies of thermoelectric materials were doubled, thermoelectric coolers might replace the conventional gas refrigerators in your home," said Cohn, professor and chairman of the UM Department of Physics in the College of Arts and Sciences and lead author of the study. "Converting waste heat into electric power, for example, using vehicle exhaust, is a near-term 'green' application of such materials."
Useful thermoelectric materials produce a large voltage for a given temperature difference, with the ratio known as "thermopower." LiPB is comprised of aligned conducting chains. The researchers found that this material has very different thermopowers when the temperature difference is applied parallel or perpendicular to the conducting chains. When an electric current was applied in a direction slightly misaligned with the chains, heat flowed perpendicular to the current, a phenomenon known as the "transverse Peltier effect." The efficiency of this effect in LiPB was among the largest known for a single compound. "That such a large directional difference in thermopower exists in a single compound is exceedingly rare and makes applications possible," Cohn said. "This is significant because transverse Peltier devices typically employ a sandwich of different compounds that is more complicated and costly to fabricate."
As their motivation for the work, Cohn noted that metals with a similar electronic structure often exhibit interesting physics and the thermoelectric properties of LiPB had never been studied in detail. "The present material," he said, "might be useful as it is, but the larger implication of our work is that the ingredients underlying its special properties may serve as a guide to finding or engineering new and improved materials."
###
The study is titled "Extreme Thermopower Anisotropy and Interchain Transport in the Quasi-One-Dimensional Metal Li0.9Mo6O17" Other authors of the study are Saeed Moshfeghyeganeh,Ph.D. student in the Department of Physics at UM; Carlos A. M. dos Santos, professor at the Escola de Engenharia de Lorena in Brazil and John J. Neumeier, professor in the Department of Physics, Montana State University.
####
For more information, please click here
Contacts:
Annette Gallagher
305-284-1121
Copyright © University of Miami
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Materials/Metamaterials/Magnetoresistance
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Enhancing transverse thermoelectric conversion performance in magnetic materials with tilted structural design: A new approach to developing practical thermoelectric technologies December 13th, 2024
FSU researchers develop new methods to generate and improve magnetism of 2D materials December 13th, 2024
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |