Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Ames Lab creates multifunctional nanoparticles for cheaper, cleaner biofuel

Abstract:
The U.S. Department of Energy's Ames Laboratory has created a faster, cleaner biofuel refining technology that not only combines processes, it uses widely available materials to reduce costs.

Ames Lab creates multifunctional nanoparticles for cheaper, cleaner biofuel

Ames, IA | Posted on May 12th, 2014

Ames Laboratory scientists have developed a nanoparticle that is able to perform two processing functions at once for the production of green diesel, an alternative fuel created from the hydrogenation of oils from renewable feedstocks like algae.

The method is a departure from the established process of producing biodiesel, which is accomplished by reacting fats and oils with alcohols.

"Conventionally, when you are producing biodiesel from a feedstock that is rich in free fatty acids like microalgae oil, you must first separate the fatty acids that can ruin the effectiveness of the catalyst, and then you can perform the catalytic reactions that produce the fuel," said Ames Lab scientist Igor Slowing. "By designing multifunctional nanoparticles and focusing on green diesel rather than biodiesel, we can combine multiple processes into one that is faster and cleaner." Contrary to biodiesel, green diesel is produced by hydrogenation of fats and oils, and its chemical composition is very similar to that of petroleum-based diesel. Green diesel has many advantages over biodiesel, like being more stable and having a higher energy density.

An Ames Lab research group, which included Slowing, Kapil Kandel, Conerd Frederickson, Erica A. Smith, and Young-Jin Lee, first saw success using bi-functionalized mesostructured nanoparticles. These ordered porous particles contain amine groups that capture free fatty acids and nickel nanoparticles that catalyze the conversion of the acids into green diesel. Nickel has been researched widely in the scientific community because it is approximately 2000 times less expensive as an alternative to noble metals traditionally used in fatty acid hydrogenation, like platinum or palladium.

Creating a bi-functional nanoparticle also improved the resulting green diesel. Using nickel for the fuel conversion alone, the process resulted in too strong of a reaction, with hydrocarbon chains that had broken down. The process, called "cracking," created a product that held less potential as a fuel.

"A very interesting thing happened when we added the component responsible for the sequestration of the fatty acids," said Slowing. "We no longer saw the cracking of molecules. So the result is a better catalyst that produces a hydrocarbon that looks much more like diesel. "

"It also leaves the other components of the oil behind, valuable molecules that have potential uses for the pharmaceutical and food industries," said Slowing.

But Slowing, along with Kapil Kandel, James W. Anderegg, Nicholas C. Nelson, and Umesh Chaudhary, took the process further by using iron as the catalyst. Iron is 100 times cheaper than nickel. Using iron improved the end product even further, giving a faster conversion and also reducing the loss of CO2 in the process.

"As part of the mission of the DOE, we are focused on researching the fundamental science necessary to create the process; but the resulting technology should in principle be scalable for industry," he said.

The process is discussed in a paper, "Bifunctional Adsorbent-Catalytic Nanoparticles for the Refining of Renewable Feedstocks" published in 2013 in ACS Catalysis, and also in "Supported Iron Nanoparticles for the Hydrodeoxygenationof Microalgal Oil to Green Diesel" published in May 2014 in the Journal of Catalysis.

A patent application has been filed for this technology; it is available for licensing from the Iowa State University Research Foundation. Further information can be obtained at

This research is supported by the U.S. Department of Energy Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

####

About DOE/Ames Laboratory
Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

For more information, please click here

Contacts:
Igor I. Slowing
Chemical and Biological Sciences
515-294-1959


Laura Millsaps
Public Affairs
515-294-3494

Copyright © DOE/Ames Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Energy

KAIST researchers introduce new and improved, next-generation perovskite solar cell​ November 8th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project