Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Iranian, Finnish Scientists Present New Model to Determine Nanocomposites Properties

Abstract:
Iranian researchers from Isfahan University of Technology in association with Finnish researchers from Alto University presented a micromechanical model that is able to predict mechanical properties of various types of polymeric and metallic base nanocomposites.

Iranian, Finnish Scientists Present New Model to Determine Nanocomposites Properties

Tehran, Iran | Posted on May 3rd, 2014

Taking into account the malfunctions of nanocomposites, the model is able to present an appropriate and ideal method for the production of a nanocomposite with the best mechanical properties. The method has applications in various industries, including aerospace, automobile manufacturing and medical engineering.

Theoretical methods that are commonly used for the calculation of mechanical properties of nanocomposites are not in agreement with results obtained from experimental data. The main reason for the disagreement is the presence of malfunctions such as accumulation and compression of strengthening nanomaterials and their separation from the composite bed. The model is in conformity with the reality of the problem, and it is able to take into consideration the separation of strengthening materials from the bed during the mechanical loading.

By observing significant difference between experimental data and the existing theories, the researchers proposed a new micromechanical model that is able to provide an initial determination of the size of strengthening particles and their surface adhesive energy with the bed material. Evaluation of the proposed model showed that there was small difference between results obtained from the theoretical model and the experimental data.

In order to prevent the damage caused by the separation of strengthening materials from the bed, tension-stress curves obtained from different methods can be compared with results obtained from the theory so that an ideal method is achieved to produce nanocomposites. In other words, comparing the obtained results showed the best method to create higher surface adhesion energy and give the optimum size for the strengthening particles to prevent the separation.

Results of the research have been published in Composites Science and Technology, vol. 93, issue 1, January 2014, pp. 38-45.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Research partnerships

Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project