Home > Press > Iranians Produce Nanocomposite from Sugarcane
Abstract:
Iranian researchers from the University of Tehran utilized sugarcane waste to produce nanocomposite film.
The product has unique physical and mechanical properties and has many applications in packaging, glue making, medicine and electronic industries.
These nanofibers have simpler, faster and more cost-effective production method in comparison with other production methods. The size of the produced cellulose nanofiber has been reported about 39±13 nm while tension resistant of the nanocomposite produced from the nanofibers has been reported about 140 MPa. The produced nanocomposite has higher strength in comparison with the majority of biodegradable and non-biodegradable films. It seems that the produced nanocomposite can be considered an appropriate option for the elimination of artificial polymers and oil derivatives from packaging materials.
In order to produce the product, cellulose fibers were produced through mechanical milling method after separation and purification of cellulose from sugarcane bagasse, and then nanopapers were produced. Next, full cellulose nanocomposite was produced through partial dissolving method, and its characteristics were evaluated.
Results showed that as the time of partial dissolving increases, the diffusivity of the nanocomposite into vapor decreases due to the increase in glassy part (amorphous) to crystalline part. However, thermal resistant decreases as the time of partial dissolving increases because a decrease is observed in the crystalline part.
In addition, when cellulose microfibers turn into nanofibers, resistance against the tension of the produced films increases. The researchers believe that the reason for the increase is the reduction in fault points (points that lead to the fracture in cellulose fibers), increase in specific area, and integrity of nanofibers. Transparency of samples significantly increases as the size of particles decreases to nanometric scale.
Results of the research have been published in Carbohydrate Polymers, vol. 104, issue 1, January 2014, pp. 59-65.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Materials/Metamaterials/Magnetoresistance
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Food/Agriculture/Supplements
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023
Night-time radiative warming using the atmosphere November 17th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |