Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Economics = MC2 -- A portrait of the modern physics startup: Successful companies founded by physicists often break the Silicon Valley model, according to new American Institute of Physics report

This cover of 'Physics Entrepreneurship and Innovation.'

Credit: AIP
This cover of 'Physics Entrepreneurship and Innovation.'

Credit: AIP

Abstract:
For much of the 20th century, many of the technological innovations that drove U.S. economic growth emerged from "idea factories" housed within large companies -- research units like Bell Labs or Xerox PARC that developed everything from the transistor to the computer mouse.

Economics = MC2 -- A portrait of the modern physics startup: Successful companies founded by physicists often break the Silicon Valley model, according to new American Institute of Physics report

Washington, DC | Posted on April 23rd, 2014

In recent decades, however, many large high-tech companies have eliminated in-house research programs, turning instead to startup companies as their primary source of breakthrough innovations.

"Small startups have replaced corporate research centers as the drivers of American innovation," said Orville Butler, a former historian at the American Institute of Physics (AIP) and coauthor of a new AIP report on physics startups.

The report, titled Physics Entrepreneurship and Innovation, is based on extensive interviews with 140 PhD physicists and other professionals who co-founded and work at some 91 startup companies in 14 states that were established in the last few decades. These companies are engaged in making medical devices, manufacturing tools, nanotechnology, lasers and optical devices, renewable energy technologies and other products.

There is no one winning formula for a successful physics startup, said Joe Anderson, director of AIP's Niels Bohr Library & Archives and co-author of the new report. Many physics startups can be found in the same Boston and Silicon Valley zip codes that are also hotspots for biotech and internet startups, but many are found far from the those twin poles. Instead they are clustered in regions scattered across the west coast, southern states and the Midwest -- in places where venture capital funding may not be as robust or where the particular technology transfer processes in place at one nearby large state university may dominate the business climate. But that seems to work for many companies.

"One of the deliberate things people try to do in the United States and abroad is to create another Silicon Valley, but it doesn't always work," Anderson said. "This is a different kind of phenomenon."

One of the major differences, the report found, is between the culture of the physics startup and the internet startup. While high-flying Silicon Valley execs are likely to see risk taking as something that defines them professionally if not personally, most of the physics entrepreneurs involved in the study see themselves as risk adverse -- as far apart from their internet cousins as oxford shirts are from hoodie sweats.

And unlike biotech startups, which tend to seek emerging markets by developing new drugs and devices to sell, many physics startups differ. Some do seek to sell new technologies to emerging markets but others specialize in improving existing technologies and adapting them for new uses based on a perceived market for those goods -- what the report terms "market pull" versus "technology push."

One factor that remained consistent across the United States was the negative response that entrepreneurs had to current immigration policies and the U.S. International Traffic in Arms Regulations, which startup founders saw as hostile to American high-tech competitiveness.

Funding is one of the two most critical challenges that entrepreneurs face -- the other being the technology itself. According to one participant in the study, the funding question is always the one and only topic entrepreneurs ever discuss when they get together at meetings. Venture capitalists have become much more risk averse over the past decade, and research intensive startups typically depend, at least initially, on federal Small Business Innovation Research grants — something that is much less common among Silicon Valley tech startups.

###

This material is based upon work supported by the National Science Foundation under Grant No 0849616, as well as the Avenir Foundation and the American Institute of Physics. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or the other funders.

####

About American Institute of Physics
The American Institute of Physics is an organization of scientific societies in the physical sciences, representing scientists, engineers, and educators. AIP offers authoritative information, services, and expertise in physics education and student programs, science communication, government relations, career services for science and engineering professionals, statistical research in physics employment and education, industrial outreach, and the history of physics and allied fields. AIP publishes Physics Today, the most influential and closely followed magazine of the physics community, and is also home to the Society of Physics Students and the Niels Bohr Library and Archives. AIP owns AIP Publishing LLC, a scholarly publisher in the physical and related sciences.

For more information, please click here

Contacts:
Jason Socrates Bardi

240-535-4954

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The report can be viewed online at:

Related News Press

News and information

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Physics

Department of Energy announces $71 million for research on quantum information science enabled discoveries in high energy physics: Projects combine theory and experiment to open new windows on the universe January 17th, 2025

‘Brand new physics’ for next generation spintronics: Physicists discover a unique quantum behavior that offers a new way to manipulate electron-spin and magnetization to push forward cutting-edge spintronic technologies, like computing that mimics the human brain January 17th, 2025

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Announcements

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project