Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > No compromises: JILA's short, flexible, reusable AFM probe

This image shows JILA's modified AFM probes measuring DNA molecules. The older mod (long cantilever, right) eliminated the usual gold coating to enhance long-term stability. The latest version (left) retains the gold coating where needed to reflect light but maintains excellent stability. Researchers also removed a large section to reduce stiffness and friction near surfaces. The new probe provides precise results much faster than before, while reducing "noise" (colored squiggles).

Credit: Credit: Baxley/JILA
This image shows JILA's modified AFM probes measuring DNA molecules. The older mod (long cantilever, right) eliminated the usual gold coating to enhance long-term stability. The latest version (left) retains the gold coating where needed to reflect light but maintains excellent stability. Researchers also removed a large section to reduce stiffness and friction near surfaces. The new probe provides precise results much faster than before, while reducing "noise" (colored squiggles).

Credit: Credit: Baxley/JILA

Abstract:
JILA researchers have engineered a short, flexible, reusable probe for the atomic force microscope (AFM) that enables state-of-the-art precision and stability in picoscale force measurements. Shorter, softer and more agile than standard and recently enhanced AFM probes, the JILA tips will benefit nanotechnology and studies of folding and stretching in biomolecules such as proteins and DNA.

No compromises: JILA's short, flexible, reusable AFM probe

Posted on April 9th, 2014

An AFM probe is a cantilever, shaped like a tiny diving board with a small, atomic-scale point on the free end. To measure forces at the molecular scale in a liquid, the probe attaches its tip to a molecule such as a protein and pulls; the resulting deflection of the cantilever is measured. The forces are in the realm of piconewtons, or trillionths of a newton. One newton is roughly the weight of a small apple.

The new probe design, described in ACS Nano,* is the JILA research group's third recent advance in AFM technology. JILA is jointly operated by the National Institute of Standards and Technology (NIST) and University of Colorado Boulder.

The group previously improved AFM position stability by using laser beams to sense motion** and removing the gold coating from long probe tips, or cantilevers, to enhance long-term force stability.*** However, removing the gold reduces the strength of the signal being measured, and using long cantilevers leads to other measurement problems such as slower response to dynamic events like protein unfolding.

The latest modification overcomes these and other issues, improving precision without loss of stability, speed, or sensitivity. JILA researchers used a focused ion beam to cut a hole in the center of a short commercial cantilever and thinned the remaining support structures, thereby reducing the cantilever's stiffness and friction near surfaces. The result is excellent long-term stability and improved short-term precision, respectively, in AFM force measurements.

JILA researchers also added a protective glass cap over the gold coating at the end of the cantilever to retain beneficial reflectivity, and then removed the remaining gold to gain force stability. The modified cantilever enables rapid, precise and stable force measurements across a broad range of operating frequencies.

"Previously, we had to average the Brownian (random) motion of our favorite cantilever for about 60 milliseconds to get a measurement that had a precision of 1 piconewton," JILA/NIST biophysicist Tom Perkins says. "Now, we can get the same precision in 1 millisecond or so."

JILA researchers demonstrated significant benefits for single molecule studies. For instance, the short, soft cantilevers can quickly measure abrupt changes in force when a protein unfolds. Protein folding is required for proper biological function and misfolding can lead to diseases such as Alzheimer's. The new cantilevers match the response of stiffer, unmodified cantilevers but with greater stability and precision. Force stability is crucial in this application because protein folding and unfolding rates are exponentially sensitive to tiny changes (smaller than 1 piconewton) in applied load. The new device also can track fleeting nanoscale events, including protein folding, over hundreds of seconds—much longer periods than previously possible. The new design should also be applicable to rapid probing of the mechanical properties of materials at the nanoscale.

Significantly, the new cantilevers are robust enough to be reused for multiple days. Moreover, JILA researchers say the new design is simple and inexpensive to make, and thus, suitable for routine use.

"Amazingly, this project was spearheaded by a talented undergraduate. We hope other groups with similarly talented students will adopt these cantilevers. We certainly are," Perkins said.

###

The research was supported by the National Science Foundation and NIST.

*M.S. Bull, R.M.A. Sullan, H. Li and T.T. Perkins. Improved single-molecule force spectroscopy using micromachined cantilevers. ACS Nano. Published online March 26,2014. DOI:10.1021/nn5010588

####

For more information, please click here

Contacts:
Laura Ost

303-497-4880

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

**See 2009 NIST Tech Beat article, "Making a Point: Picoscale Stability in a Room-Temperature AFM," at:

***See 2012 NIST Tech Beat article "Not-So-Precious: Stripping Gold From AFM Probes Allows Better Measurement of Picoscale Forces,"at:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Tools

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project