Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Biology as a Designer – From Scientific Research to Industrialized Products

Abstract:
Over the past century, we have expanded enormously our understanding and appreciation of the multitude of wonderfully complex processes and mechanisms that are present in nature. Our increased knowledge of how plants and animals have evolved to better adapt to their habitats and the environment has also had a profound effect on other fields of human endeavor. In particular, the door has been opened to a multitude of opportunities concerning what is loosely termed ‘bio-inspiration' in the fields of engineering and the advancement of man-made technologies. Today indeed, the pioneering innovation in a wide range of practical applications, such as the development of new multi-functional materials, draws directly from the well of experience that nature provides, as scientists strive to find more efficient and environmentally sustainable technical solutions.

Biology as a Designer – From Scientific Research to Industrialized Products

Berlin, Germany | Posted on April 2nd, 2014

While recognising that bio-inspiration for technological development is already an established concept, "An Experimental Study on Adhesive or Anti-adhesive, Bio-inspired Experimental Nanomaterials" by Italian scientists Emiliano Lepore and Nicola Pugno, released in Open Access by De Gruyter Open, sets out to explore the potential of three categories of bio-inspired materials, namely, adhesives, anti-adhesives, and materials designed to offer exceptional characteristics - particularly in terms of their strength-to-weight ratio. In each of these areas, the technologies, which are currently at the forefront of scientific research, are described in relation to how they have been inspired by nature in an attempt to optimise their physical characteristics and performance in operation, with an aim to design and develop new innovative products.

Lepore and Pugno investigate a wide range of natural systems and employ original experimental procedures, the book additionally stands out for its rigorous and innovative approach to biomaterials. For example, the challenge of creating strong, reliable and affordable adhesives appears in numerous areas of engineering, such as the development of aircrafts, and all types of vehicles for transportation on land or water, where the need to save energy consumption by reducing weight is of paramount importance. There is also a specific interest in bonding dissimilar materials, which due to their physical properties prohibit the application of more conventional joining techniques. In this field, inspiration has been sought by investigating the adhesive abilities of insects, spiders, and reptiles.

"By discussing experimental studies on geckos, lotus leaves and spider webs, this monograph encourages the reader to gain inspiration from nature in order to develop technologies and solutions across a broad range of applications which offer significant improvements and advantages in terms of their effectiveness and efficiency" - says Prof. Cecilia Surace from Polytechnic University of Turin. The authors make a case, that by understanding how nature can help to cater for our everyday needs, rather than abusing our planet and polluting the atmosphere, we may learn one of the most important lessons of all: how to achieve true well-being and sustainability for all life on earth.

####

For more information, please click here

Contacts:
Maria Hrynkiewicz
De Gruyter Open
+48 660 476421

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The book is available to read, download and share fully open access here:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanobiotechnology

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project