Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers see Kelvin wave on quantum 'tornado' for first time

Illustration of Kelvin waves on retracting quantized vortices after they met, crossed and exchanged tails -- a process called reconnection. A new study provides visual evidence that after the vortexes snap away from each other, they develop ripples called "Kelvin waves" to quickly get rid of the energy caused by the connection and relax the system.

Credit: Enrico Fonda
Illustration of Kelvin waves on retracting quantized vortices after they met, crossed and exchanged tails -- a process called reconnection. A new study provides visual evidence that after the vortexes snap away from each other, they develop ripples called "Kelvin waves" to quickly get rid of the energy caused by the connection and relax the system.

Credit: Enrico Fonda

Abstract:
Draining the water from a bathtub causes a spinning tornado to appear. The downward flow of water into the drain causes the water to rotate, and as the rotation speeds up, a vortex forms that obeys the laws of classical mechanics. However, if the water is extremely cold liquid helium, the fluid will swirl around an invisible line to form a vortex that obeys the laws of quantum mechanics. Sometimes, two of these quantum tornadoes flex into curved lines, cross over one another to form a letter X shape, swap ends, and then violently retract from one another—a process called reconnection.

Researchers see Kelvin wave on quantum 'tornado' for first time

College Park, MD | Posted on March 24th, 2014

Computer simulations have suggested that after the vortexes snap away from each other, they develop ripples called "Kelvin waves" to quickly get rid of the energy caused by the connection and relax the system. However, the existence of these waves had never been experimentally proven.

Now, for the first time, researchers provide visual evidence confirming that the reconnection of quantum vortexes launches Kelvin waves. The study, which was conducted at the University of Maryland, will be published the week of March 24, 2014 in the online early edition of the journal Proceedings of the National Academy of Sciences. The research was supported by the National Science Foundation.

"We weren't surprised to see the Kelvin waves on the quantum vortex, but we were excited to see them because they had never been seen before," said Daniel Lathrop, a UMD physics professor. "Seeing the Kelvin waves provided the first experimental evidence that previous theories predicting they would be launched from vortex reconnection were correct."

Understanding turbulence in quantum fluids, such as ultracold liquid helium, may offer clues to neutron stars, trapped atom systems and superconductors. Superconductors, which are materials that conduct electricity without resistance below certain temperatures, develop quantized vortices. Understanding the behavior of the vortices may help researchers develop superconductors that remain superconducting at higher current densities.

Physicists Richard Feynman and Lars Onsager predicted the existence of quantum vortices more than a half-century ago. However, no one had seen quantum vortices until 2006. In Lathrop's laboratory at UMD, researchers prepared a cylinder of supercold helium—at 2 degrees Celsius above absolute zero—injected with frozen tracer particles made from atmospheric air and helium gases. When they shined a laser into the cylinder, the researchers saw the particles trapped on the vortices like dew drops on a spider web.

"Kelvin waves on quantized vortices had been predicted, but the experiments were challenging because we had to conduct them at lower temperatures than our previous experiments," explained Lathrop.

Since 2006, the researchers have used the same technique to further examine quantum vortexes. During an experiment in February 2012, they witnessed a unique reconnection event. One vortex reconnected with another and a wave propagated down the vortex. To quantitatively study the wave's motion, the researchers tracked the position of the particles on the vortex. The resulting waveforms agreed generally with theories of Kelvin waves propagating from quantum vortexes.

"These first observations of Kelvin waves will surely lead to exciting new experiments that push the limits of our knowledge of these exotic quantum motions," added Lathrop.

In the future, Lathrop plans to use florescent nanoparticles to investigate what happens near the transition to the superfluid state.

Lathrop conducted the current study with David Meichle, a UMD physics graduate student; Enrico Fonda, who was a research scholar at UMD and graduate student at the University of Trieste when the study was performed and is now a postdoctoral researcher at New York University; Nicholas Ouellette, who was a visiting assistant professor at UMD when the study was performed and is now an associate professor in mechanical engineering & materials science at Yale University; and Sahand Hormoz, a postdoctoral researcher at the University of California, Santa Barbara's Kavli Institute for Theoretical Physics.

###

This research was supported by the National Science Foundation (NSF) under Award No. DMR-0906109. The content of this article does not necessarily reflect the views of the NSF.

Writer: Abby Robinson

The research paper, "Direct observation of Kelvin waves excited by quantized vortex reconnections," Enrico Fonda, David P. Meichle, Nicholas T. Ouellette, Sahand Hormoz, and Daniel P. Lathrop, will be published the week of March 24, 2014 in the online early edition of the journal Proceedings of the National Academy of Sciences.

####

For more information, please click here

Contacts:
Abby Robinson

301-405-5845

Heather Dewar
301-405-9267

Copyright © University of Maryland

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video: Reconnection Causes Kelvin Waves on Quantum Vortices

Daniel Lathrop Lab:

Lathrop Lab YouTube Channel:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Videos/Movies

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project