Home > Press > Quantum physics secures new cryptography scheme
The experiment's Alice and Bob communicated with entangled photons produced in this setup. Such apparatus could be miniaturized using techniques from integrated optics.
Credit: IQC, University of Waterloo |
Abstract:
The way we secure digital transactions could soon change. An international team has demonstrated a form of quantum cryptography that can protect people doing business with others they may not know or trust - a situation encountered often on the internet and in everyday life, for example at a bank's ATM.
"Having quantum cryptography to hand is a realistic prospect, I think. I expect that quantum technologies will gradually become integrated with existing devices such as smartphones, allowing us to do things like identify ourselves securely or generate encryption keys," says Stephanie Wehner, a Principal Investigator at the Centre for Quantum Technologies (CQT) at the National University of Singapore, and co-author on the paper.
In cryptography, the problem of providing a secure way for two mutually distrustful parties to interact is known as 'two-party secure computation'. The new work, published in Nature Communications, describes the implementation using quantum technology of an important building block for such schemes.
CQT theorists Wehner and Nelly Ng teamed up with researchers at the Institute for Quantum Computing (IQC) at the University of Waterloo, Canada, for the demonstration.
"Research partnerships such as this one between IQC and CQT are critical in moving the field forward," says Raymond Laflamme, Executive Director at the Institute for Quantum Computing. "The infrastructure that we've built here at IQC is enabling exciting progress on quantum technologies."
"CQT and IQC are two of the world's largest, leading research centres in quantum technologies. Great things can happen when we combine our powers," says Artur Ekert, Director of CQT.
The experiments performed at IQC deployed quantum-entangled photons in such a way that one party, dubbed Alice, could share information with a second party, dubbed Bob, while meeting stringent restrictions. Specifically, Alice has two sets of information. Bob requests access to one or the other, and Alice must be able to send it to him without knowing which set he's asked for. Bob must also learn nothing about the unrequested set. This is a protocol known as 1-2 random oblivious transfer (ROT).
ROT is a starting point for more complicated schemes that have applications, for example, in secure identification. "Oblivious transfer is a basic building block that you can stack together, like lego, to make something more fantastic," says Wehner.
Today, taking money out of an ATM requires that you put in a card and type in your PIN. You trust the bank's machine with your personal data. But what if you don't trust the machine? You might instead type your PIN into your trusted phone, then let your phone do secure quantum identification with the ATM (see artist's impression). Ultimately, the aim is to implement a scheme that can check if your account number and PIN matches the bank's records without either you or the bank having to disclose the login details to each other.
Unlike protocols for ROT that use only classical physics, the security of the quantum protocol cannot be broken by computational power. Even if the attacker had a quantum computer, the protocol would remain secure.
Its security depends only on Alice and Bob not being able to store much quantum information for long. This is a reasonable physical assumption, given today's best quantum memories are able to store information for minutes at most. Moreover, any improvements in memory can be matched by changes in the protocol: a bigger storage device simply means more signals have to be sent in order to achieve security. (The idea of 'noisy storage' securing quantum cryptography was developed by Wehner in earlier papers.)
To start the ROT protocol, Alice creates pairs of entangled photons. She measures one of each pair and sends the other to Bob to measure. Bob chooses which photons he wants to learn about, dividing his data accordingly without revealing his picks to Alice. Both then wait for a length of time chosen such that any attempt to store quantum information about the photons is likely to fail. To complete the oblivious transfer, Alice then tells Bob which measurements she made, and they both process their data in set ways that ensure the result is correct and secure within a pre-agreed margin of error.
In the demonstration performed at IQC, Alice and Bob achieved a random oblivious transfer of 1,366 bits. The whole process took about three minutes.
The experiment adapted devices built to do a more standard form of quantum cryptography known as quantum key distribution (QKD), a scheme that generates random numbers for scrambling communication. Devices for QKD are already commercially available, and miniaturised versions of this experiment are in principle possible using integrated optics. In the future, people might carry hand-held quantum devices that can perform this kind of feat.
"We did the experiment with big and bulky optics taking metres of space, but you can well imagine this technology being shrunk down to sit happily next to classical processing circuits on a small little microchip. The field of integrated quantum optics has been progressing in leaps and bounds, and most of the key pieces required to implement ROT have already been successfully demonstrated in integrated setups a few millimetres in size," says Chris Erven, who performed the experiments at IQC as a PhD student under the supervision of Raymond Laflamme and Gregor Weihs. Weihs is now at the University of Innsbruck, Austria. Erven is now a postdoctoral fellow at the University of Bristol, UK.
####
For more information, please click here
Contacts:
Stephanie Wehner
Principal Investigator and Associate Professor, Centre for Quantum Technologies
National University of Singapore
Tel: +65 6601 1478
Email:
Chris Erven
Then: PhD Student, Institute for Quantum Computing, University of Waterloo, Canada
Now: Postdoctoral Fellow, University of Bristol, UK
Tel: +44 (0)117 331 7340
Email:
Raymond Laflamme
Executive Director, Institute for Quantum Computing
University of Waterloo, Canada
Tel: +1 519-888-4422
Email:
Copyright © National University of Singapore
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Law enforcement/Anti-Counterfeiting/Security/Loss prevention
With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
New chip ramps up AI computing efficiency August 19th, 2022
Quantum Computing
New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Photonics/Optics/Lasers
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Single atoms show their true color July 5th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||