Home > Press > Silver nanoparticle on graphene oxide support: An efficient catalyst for organic transformations
![]() |
Figure 1: (Left) Transmission electron microscopy image of Ag-rGO nanohybrids. The inset shows the catalytic conversion of 4-nitrophenol to 4-aminophenol. Figure 2 (Right) Absorption spectra of 4-nitrophenol decreases in intensity and its color fades (inset) due to catalytic conversion. |
Abstract:
Silver (Ag) has a high catalytic activity towards many organic and inorganic transformations such as NOx reduction and catalytic oxidation of CO to CO2. In practical applications, catalysts like Ag are affixed to a substrate, usually a solid with a high surface area such as alumina or carbon.
To efficiently use Ag as a catalyst, its specific surface area must be maximized by reducing its particle size. Moreover, the development of simple and low-cost synthesis method is highly desired for practical applications.
Now, Tran Viet Thu and colleagues at Toyohashi University of Technology have shown that graphene oxide (GO) sheets can be used as an excellent support for the growth of Ag particles. GO was first prepared from commercial graphite by oxidation and exfoliation in water. Then the Ag-GO hybrids were prepared by a chemical reduction route using GO and silver nitrate as precursors, sodium borohydride as reducing agent, and trisodium citrate as stabilizer.
Transmission electron microscopy imaging showed very small size (3.6±0.6 nm) Ag particles to be decorated on GO sheets, compared with Ag particles synthesized without GO (tens of nm in size). This decrease in particle size means more Ag atoms were present at the surface and a large increase in the specific surface area. As a result, the Ag-GO hybrids were more efficient for the catalytic conversion of 4-nitrophenol (toxic pollutant) into 4-aminophenol, an intermediate for the production of several drugs. In addition, the Ag-GO hybrids exhibited improved catalytic activity compared to Ag particles synthesized without GO.
The research suggests a low-cost route for the synthesis of catalytic Ag-GO hybrids and highlights the promising use of GO as a support for other functional nanostructures.
Reference:
Authors: Tran Viet Thu, Pil Ju Ko, Nguyen Huu Huy Phuc, and Adarsh Sandhu.
Title of original paper: Room-temperature synthesis and enhanced catalytic performance of silver-reduced graphene oxide nanohybrids.
Journal, volume, pages and year: Journal of Nanoparticle Research 15 (10), 1-13 (2013).
Digital Object Identifier (DOI): 10.1007/s11051-013-1975-9
Affiliations: Electronics-Inspired Interdisciplinary Research Institute (EIIRIS) and Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology
####
For more information, please click here
Contacts:
Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi Prefecture, 441-8580, JAPAN
Enquiries
Toyohashi University of Technology, International Affairs Division
ryugaku@office.tut.ac.jp
TEL: +81-532-44-6577
or +81-532-44-6546
Copyright © Toyohashi University of Technology
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Chemistry
Quantum interference in molecule-surface collisions February 28th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Graphene/ Graphite
Imaging
Turning up the signal November 8th, 2024
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Discoveries
Lattice-driven charge density wave fluctuations far above the transition temperature in Kagome superconductor April 25th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
Nanophotonic platform boosts efficiency of nonlinear-optical quantum teleportation April 25th, 2025
Announcements
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Tumor microenvironment dynamics: the regulatory influence of long non-coding RNAs April 25th, 2025
Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025
Tools
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |