Home > Press > Production of X-Ray Detector, High Spatial Resolution for Heavy Charged Particles
Abstract:
Iranian researchers produced x-ray detector and heavy charged particles with high spatial resolution through a highly simple and cheap method.
The detector is made of zinc oxide nanowire in form of polycarbonate.
Despite numerous applications of scintillation detectors in various industries, dispersion and afterwards, scattering of the produced optical photons are among the most important problems in their applications because it results in undesirable spatial resolution. Therefore, researchers tried to produce a new type of scintillation detector for x-ray and heavy charged particles by using one-dimensional nanowires to improve spatial resolution of the detectors.
To this end, researchers firstly used Mont Carlo simulation to ascertain the desirable performance of the proposed plan, and then they produced zinc oxide electrochemical nanowires with patterns. Through this method, nanowires with high dimensional ratio were grown in the form of polycarbonate casts. Next, polycarbonate layer containing nanowires was combined with a strong CMOS optical sensor to be used in experimental data. Pu238 was used as an alpha-generating source in the experiments and an x-ray generator with a copper target.
The main characteristic of the detector is its simplicity and low production cost. The detector can also be used in very accurate medical imaging by optimizing nano-scintillation optical efficiency by increasing the porosity of the membrane, length of nanowires, and adding appropriate impurity to increase optical gain.
Results of the research have been published in The European Physical Journal, vol. 73, November 2013, pp. 1-7.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
New imaging approach transforms study of bacterial biofilms August 8th, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |