Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanoscale freezing leads to better imaging

Images of a frozen-hydrated algae cell. (a) Some cell ultrastructure is shown using differential phase contrast imaging. (b) Distributions of zinc, iron, and potassium are visible in this X-ray fluorescence image.
Images of a frozen-hydrated algae cell. (a) Some cell ultrastructure is shown using differential phase contrast imaging. (b) Distributions of zinc, iron, and potassium are visible in this X-ray fluorescence image.

Abstract:
It's an odd twist. For scientists to determine if a cell is functioning properly, they must destroy it.

Nanoscale freezing leads to better imaging

Argonne, IL | Posted on February 26th, 2014

This is what happens in X-ray fluorescence microscopy when biological specimens are exposed to ionizing radiation, which provides images with a level of detail that conventional microscopes just can't match. This exposure can change what is being imaged in profound ways, possibly giving false accounts of how the cell actually works.

To address this issue, researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory created a new probe that freezes cells to "see" at greater detail without damaging the sample.

The issue boils down to preparation.

Traditional X-ray methods look at cells that have either been immersed in water or dehydrated, like astronaut food. For wet specimens at room temperature, the radiation can break the bonds linking molecules together and cause them to scatter, changing the sample's structure.

For dehydrated specimens, potassium and other diffusible ions are washed away during chemical fixation, which kills the cell and loosens the cell membrane, allowing ions to escape. Moreover, when the sample is dehydrated, the cell can shrink, distort or even collapse.

"Imagine a ball. When you dry it, you make it flat," says Si Chen, principle author of the study. "It changes the structure of the sample and also the distribution of the trace elements that we are looking for."

To address this issue, Argonne researchers developed a hard X-ray fluorescence nanoprobe called the Bionanoprobe, which makes three-dimensional images that map out the locations of trace elements, like iron or potassium, in frozen biological samples.

"We don't want to dry the sample; we want to keep it hydrated," says Chen. "We plunge the sample into liquid ethane at very high speeds and then look at the frozen sample directly."

Rapidly cooling biological specimens to temperatures of -260°F preserves the natural state of a cell's organelles and trace elements while retaining the water in the sample.

Housed at an undulator beamline at sector 21 of Argonne's Advanced Photon Source, the Bionanoprobe features a vacuum chamber that eliminates frosting and convective heating and automatically acquires tomographic (sectioned images) data sets. Sector 21 is sponsored by a consortium of several universities and a research institute known collectively as the Life Sciences Collaborative Action Team.

The Bionanoprobe can also produce extremely high-resolution images at the smallest scales—below 100 nanometers. Compare that to a typical human hair, which is 80,000 to 100,000 nanometers wide. Chen uses X-ray optics called zone plates to focus the X-ray beam down to a miniscule small spot. A simple scan produces an image with a full fluorescent spectrum for each scanning step.

Recent tests have been encouraging. One team of researchers successfully acquired differential phase contrast and X-ray fluorescence images simultaneously by raster scanning of a green algae. The former gave researchers some of the algae's ultrastructure, and using the latter, they were able to show evenly distributed potassium and patterned distributions of zinc and iron.

"We can see the trace element distribution, but with biological samples, the contrast from the structure is typically very low," says Chen. "Phase contrast imaging highlights the structural details."

Another study made X-ray fluorescence images of an immortal cervical cancer cell line called HeLa cells. The samples were plunge-frozen, chemically fixed and then treated with an iron oxide core in a titanium dioxide shell nanocomposite, which allowed researchers to determine if the nanocomposites actually made it into the cell nucleus.

Dr. Gale Woloschak, professor at Northwestern University's Feinberg School of Medicine conducted the study. She created nanoparticles that target and kill cancer cells, but when the researchers wanted to see where the nanoparticles actually wound up in the cell, they ran into trouble with traditional X-ray methods.

"This is the problem," says Woloschak. "If you think of how two-dimensional X-ray imaging works, X-rays penetrate through the entire cell, so it's hard to determine whether the nanoparticles are above, below or inside the nucleus. What the Bionanoprobe does is give us a three-dimensional image—we could actually see that the nanoparticles were imbedded in the nucleus."

The work is reported in "The Bionanoprobe: hard X-ray fluorescence nanoprobe with cryogenic capabilities," published last month in the Journal of Synchrotron Radiation.

This work was supported with funding by the National Institutes of Health. Use of the Advanced Photon Source is funded by the Department of Energy's Office of Science.

####

About DOE/Argonne National Laboratory
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Advanced Photon Source at Argonne National Laboratory is one of five national synchrotron radiation light sources supported by the U.S. Department of Energy’s Office of Science to carry out applied and basic research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels, provide the foundations for new energy technologies, and support DOE missions in energy, environment, and national security. To learn more about the Office of Science X-ray user facilities, visit the user facilities directory.

The Life Sciences Collaborative Access Team (LS-CAT) provides macromolecular crystallography resources at Argonne National Laboratory’s Advanced Photon Source for those with a need to determine the structure of proteins. Current LS-CAT members are Michigan State University, University of Michigan, Wayne State University, Van Andel Research Institute, Northwestern University, University Wisconsin-Madison, Vanderbilt University, and University of Illinois at Urbana-Champaign.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Tona Kunz

630-252-5560

Jared Sagoff
(630) 252-5549

Copyright © DOE/Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Imaging

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Tools

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project