Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Improvement in polymers for aviation

Electron transmission micrographof thenanocompositepoly(ether imide)-poly(butylene terephthalate)/carbon nanotubes with 3% of nanotubes.
Electron transmission micrographof thenanocompositepoly(ether imide)-poly(butylene terephthalate)/carbon nanotubes with 3% of nanotubes.

Abstract:
We live surrounded by polymers and today, rather than come up with new polymers, there is a tendency to modify them in order to obtain new applications. Carbon nanotubes have excellent mechanical properties, are very tough, very rigid, and what is more, they conduct electricity. "The problem with them is that they get dispersed, in other words, it's very difficult to get them to blend with polymers," explained Iñaki Eguiazabal, a member of the Polymer Technology Group. That is why it is essential to come up with methods that will enable the carbon nanotubes to have a high degree of dispersion and stability within the polymer matrix. "In this research we have come up with the successful preparation of one of these materials," he added.

Improvement in polymers for aviation

Usurbil, Spain | Posted on February 26th, 2014

The research aimed to improve the mechanical properties of poly(ether imide). Poly(ether imide) is a polymer that has very good mechanical and thermal properties and is used, among other things, to produce the internal parts of aircraft. However, like most polymers it is an insulating material from the electrical perspective. "By adding carbon nanotubes, we are not only able to improve the mechanical properties of the material even further, we can also turn it into a conductor of electricity," explained Iñaki Eguiazabal. This could enable them to be used in electrostatic painting applications, among other things.

Right from the start, the activity of the Polymer Technology Group, which is part of the UPV/EHU's Department of Polymer Science and Technology and the Institute for Polymer Materials, POLYMAT, has concentrated mainly on the study of polymer blends in order to obtain new materials with optimized features.

Right now, the Group's most recent line of work is focusing on the study of nanocomposite systems consisting of thermoplastic polymers and organically modified laminated clays or carbon nanotubes. New nano-reinforced materials based on technical polymers, and in the case of systems with carbon nanotubes, conductors of electricity, have been developed in this line. Ternary systems based on polymer blends to which nanoparticles have been added have enabled the advantages offered by the blendto be combined with those provided by nanocomposites; this includes the obtaining of super-tough materials with an optimized range of properties.

The paper entitled "Widely dispersed PEI-based nanocomposites with multi-wall carbon nanotubes by blending with a master batch" has been published recently in the specialised journal Composites, Part A: Applied Science and Manufacturing, one of the most important ones in its category. The authors are PhD-holders Imanol González and IñakiEguiazabal and their paper deals with an application of the above-mentioned synergy between polymer blends and nanocomposites.

Better dispersion and increase in electrical conductivity

For the case of poly(ether imide), they resorted to incorporating a blend based on poly(butylene terephthalate)into the polymer with a high concentration of dispersed nanotubes.In actual fact,"poly(butylene terephthalate)does not have the splendid properties displayed by the polymer we are trying to improve, but both polymers blend very well and that way we can get the dispersion to extend right across the blend," Eguiazabal pointed out.

"Although thermal stability is reduced, electrical conductivity is obtained by adding 1% of carbon nanotubes," he added. On the other hand, "the mechanical properties of the poly(ether imide) improve it even more. "Finally, to all this is added the fact that the viscosity of the nanocomposites is seen to be significantly reduced thanks to the presence of the poly(butylene terephthalate), which constitutes a considerable improvement in the process ability of the materials, despite the presence of the nanotubes that tend to increase viscosity. This reduction in viscosity makes it possible to obtain products with sections of very little thickness but with complex geometry.

####

For more information, please click here

Contacts:
Oihane Lakar Iraizoz
0034-943-363040

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Aerospace/Space

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Onion-like nanoparticles found in aircraft exhaust May 14th, 2025

Quantum sensors tested for next-generation particle physics experiments: New research shows that the specialized sensors can detect particles more precisely April 25th, 2025

The National Space Society Congratulates SpaceX on Starship’s 7th Test Flight: Latest Test of the Megarocket Hoped to Demonstrate a Number of New Technologies and Systems January 17th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project