Home > Press > Transition to Superparamagnetism of Diamagnetic Nanoparticles: Breakthrough achievement in nanoparticles by Indian researcher
![]() |
Fig.1. Superparamagnetic behavior of Diamagnetic Nanoparticles |
Abstract:
Magnetic nanoparticles Researchers from worldwide believe that Superparamagnetism is a form of magnetism, which appears only in small ferromagnetic or ferrimagnetic nanoparticles but contrast to this concept Superparamagnetism has been discovered in diamagnetic nanoparticles. The researcher Ms.Theivasanthi (PACR Polytechnic College, Rajapalayam, India) who has discovered this breakthrough advancement comments: Invention of room temperature Superparamagnetism in diamagnetic nanoparticles is another milestone in nanoparticles / superparamagnetism research activities and it will lead to new concept in magnetic research. Recently, VSM analysis of the sample nanomaterial (diamagnetic) has been done at IIT Madras (India). The preliminary research result / figure confirm superparamagnetic behavior. Further research on this issue is undergoing.
The said researcher and M.Alagar (Ayya Nadar Janaki Ammal College, India) have already explored superparamagnetic behavior of Lead nanoparticles which is also a diamagnetic material. Their research article has been published in
http://manuscript.sciknow.org/uploads/pts/pub/pts_1372242123.pdf
http://arxiv.org/abs/1402.1431
She also explained that superparamagnetic nanoparticles have many applications storage devices i.e. hard disk drives, Ferrofluid, Biomedical applications like Contrast agents in Magnetic Resonance Imaging (MRI), Magnetic separation, targeted drug delivery, hyperthermia of cancer etc.
####
For more information, please click here
Contacts:
Ms. T.Theivasanthi,
PACR Polytechnic College
Rajapalayam – 626108, India.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Discoveries
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |