Home > Press > Transition to Superparamagnetism of Diamagnetic Nanoparticles: Breakthrough achievement in nanoparticles by Indian researcher
![]()  | 
| Fig.1. Superparamagnetic behavior of Diamagnetic Nanoparticles | 
Abstract:
Magnetic nanoparticles Researchers from worldwide believe that Superparamagnetism is a form of magnetism, which appears only in small ferromagnetic or ferrimagnetic nanoparticles but contrast to this concept Superparamagnetism has been discovered in diamagnetic nanoparticles. The researcher Ms.Theivasanthi (PACR Polytechnic College, Rajapalayam, India) who has discovered this breakthrough advancement comments: Invention of room temperature Superparamagnetism in diamagnetic nanoparticles is another milestone in nanoparticles / superparamagnetism research activities and it will lead to new concept in magnetic research. Recently, VSM analysis of the sample nanomaterial (diamagnetic) has been done at IIT Madras (India). The preliminary research result / figure confirm superparamagnetic behavior. Further research on this issue is undergoing. 
The said researcher and M.Alagar (Ayya Nadar Janaki Ammal College, India) have already explored superparamagnetic behavior of Lead nanoparticles which is also a diamagnetic material. Their research article has been published in 
http://manuscript.sciknow.org/uploads/pts/pub/pts_1372242123.pdf 
http://arxiv.org/abs/1402.1431 
She also explained that superparamagnetic nanoparticles have many applications storage devices i.e. hard disk drives, Ferrofluid, Biomedical applications like Contrast agents in Magnetic Resonance Imaging (MRI), Magnetic separation, targeted drug delivery, hyperthermia of cancer etc. 
####
For more information, please click here
Contacts:
Ms. T.Theivasanthi,
PACR Polytechnic College
Rajapalayam – 626108,  India.
Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||