Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Cancer drugs hitch a ride on 'smart' gold nanoshells

Abstract:
Nanoparticles capable of delivering drugs to specifically targeted cancer cells have been created by a group of researchers from China.

Cancer drugs hitch a ride on 'smart' gold nanoshells

London, UK | Posted on February 13th, 2014

The multifunctional 'smart' gold nanoshells could lead to more effective cancer treatments by overcoming a major limitation of modern chemotherapy techniques—the ability to target cancer cells specifically and leave healthy cells untouched.

Small peptides situated on the surface of the nanoshells are the key to the improved targeting ability, guiding the nanoshells to specific cancer cells and attaching to markers on the surface of the cells. The acidic environment of the cancer cells then triggers the offloading of the anticancer drugs.

The specific nanostructure of the gold nanoshells could also allow near-infrared light to be absorbed and converted into heat, opening up the possibility of using the nanoshells in targeted hyperthermia treatment—another form of cancer treatment whereby cancer cells are exposed to slightly higher temperatures than usual to destroy them.

The first results of the nanoshells' performance have been published today, 14 February, in IOP Publishing's journal Biomedical Materials.

The researchers, from East China Normal University and Tongji University, used the gold nanoshells as a building block to which they attached the commonly used anticancer drug Doxorubicin (DOX) and a specific peptide known as A54.

The gold nanoshells had diameters of around 200 nanometres—more than 50 times smaller than a red blood cell.

When tested on human liver cancer cells, the uptake of the nanoshells that had the A45 peptide was three times greater than the uptake of the control nanoshells without the peptide. There was also a significantly reduced uptake of both types of nanoshell by normal healthy cells.

The cancer cells were also treated with the gold nanoshells in a heated water bath and were shown to deliver a notable therapeutic effect compared to just the chemotherapy, demonstrating the potential of the hyperthermia treatment.

Lead author of the study Dr Shunying Liu, from East China Normal University, said: "The therapeutic activity of most anticancer drugs is limited by their systematic toxicity to proliferating cells, including some normal cells. Overcoming this problem remains a great challenge for chemotherapy."

"In our study we placed a targeting peptide on the nanoshells, which have been demonstrated to be specific to live cancer cells, improving the targeting ability and drug delivery of the gold nanoshells.

"The next step of our research is to test the 'smart' gold nanoshells in vivo on a liver cancer mouse model. We will also examine how the size of the nanoshells changes their efficacy and how efficient the nanoshells are at converting near-infrared light into heat."

####

About Institute of Physics
The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application. We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications.

About IOP Publishing

IOP Publishing provides a range of journals, magazines, websites and services that enable researchers and research organisations to reach the widest possible audience for their research.

We combine the culture of a learned society with global reach and highly efficient and effective publishing systems and processes. With offices in the UK, US, Germany, China and Japan, and staff in many other locations including Mexico and Russia, we serve researchers in the physical and related sciences in all parts of the world.

IOP Publishing is a wholly owned subsidiary of the Institute of Physics. The Institute is a leading scientific society promoting physics and bringing physicists together for the benefit of all. Any profits generated by IOP Publishing are used by the Institute to support science and scientists in both the developed and developing world. Go to ioppublishing.org.

For more information, please click here

Contacts:
Michael Bishop

01-179-301-032

Copyright © Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

From Friday 14 February this paper can be downloaded from:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project