Home > Press > Nanostructured Coatings with Controlled Thickness Produced in Iran
Abstract:
Materials engineering and metallurgic researchers of University of Tehran succeeded in the creation of a dense nanostructured coating made of titania by combining sol-gel and electrophoresis methods.
 The thickness of the coating is controllable by using parameters of titania sol. This method enables the production of nanostructure titania coatings, specially semi-conducting ceramics required in various electronic and optical industries, including photovoltaic industries.
Results of the research showed that the rate of hydrolysis reaction in titania sol greatly affected the rate of deposition in electrophoresis sol-gel method. Increase in amount of water and the concentration of alkoxide pre-material and decrease in the amount of acidic catalyst increase the rate of hydrolysis reaction, and consequently, it results in an increase in the rate of deposition in this process.
The use of different mathematical methods in deposition processes, specially processes that deal with various chemical reactions, can play an important role in the development and commercialization of the processes. The modeling of electrophoresis sol-gel deposition method in this research showed that this method can be a good approach for the production of nanostructured titania coatings by using its own sol because it enables the control of thickness of the formed layer.
Taking into account the results obtained from this research, a wide range of nanostructured materials, specially semi-conductive ceramics, can be produced through this method with controlled thickness.
Results of the research have been published in Ceramics International, vol. 40, August 2014, pp. 2121-2126.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Materials/Metamaterials/Magnetoresistance
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||