Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > On-demand vaccines possible with engineered nanoparticles

University of Washington

This image shows a collection of vaccinating nanoparticles, which at their largest are about 1,000 times smaller than a human hair. The inset graphic is a representation of how the engineered proteins decorate a nanoparticle’s surface.
University of Washington

This image shows a collection of vaccinating nanoparticles, which at their largest are about 1,000 times smaller than a human hair. The inset graphic is a representation of how the engineered proteins decorate a nanoparticle’s surface.

Abstract:
Michelle Ma

News and Information

Vaccines combat diseases and protect populations from outbreaks, but the life-saving technology leaves room for improvement. Vaccines usually are made en masse in centralized locations far removed from where they will be used. They are expensive to ship and keep refrigerated and they tend to have short shelf lives.

On-demand vaccines possible with engineered nanoparticles

Seattle, WA | Posted on January 8th, 2014

University of Washington engineers hope a new type of vaccine they have shown to work in mice will one day make it cheaper and easy to manufacture on-demand vaccines for humans. Immunizations could be administered within minutes where and when a disease is breaking out.

"We're really excited about this technology because it makes it possible to produce a vaccine on the spot. For instance, a field doctor could see the beginnings of an epidemic, make vaccine doses right away, and blanket vaccinate the entire population in the affected area to prevent the spread of an epidemic," said François Baneyx, a UW professor of chemical engineering and lead author of a recent paper published online in the journal Nanomedicine.

The research was funded by a Grand Challenges Explorations grant from the Bill & Melinda Gates Foundation and the National Institutes of Health.

In typical vaccines, weakened pathogens or proteins found on the surface of microbes and viruses are injected into the body along with compounds called adjuvants to prepare a person's immune system to fight a particular disease. But standard formulations don't always work, and the field is seeking ways to manufacture vaccines quicker, cheaper and tailored to specific infectious agents, Baneyx said.

The UW team injected mice with nanoparticles synthesized using an engineered protein that both mimics the effect of an infection and binds to calcium phosphate, the inorganic compound found in teeth and bones. After eight months, mice that contracted the disease made threefold the number of protective "killer" T-cells - a sign of a long-lasting immune response - compared with mice that had received the protein but no calcium phosphate nanoparticles.

The nanoparticles appear to work by ferrying the protein to the lymph nodes where they have a higher chance of meeting dendritic cells, a type of immune cell that is scarce in the skin and muscles, but plays a key role in activating strong immune responses.

In a real-life scenario, genetically engineered proteins based on those displayed at the surface of pathogens would be freeze-dried or dehydrated and mixed with water, calcium and phosphate to make the nanoparticles. This should work with many different diseases and be especially useful for viral infections that are hard to vaccinate against, Baneyx said.

He cautioned, however, that it has only been proven in mice, and the development of vaccines using this method hasn't begun for humans.

The approach could be useful in the future for vaccinating people in developing countries, especially when lead time and resources are scarce, Baneyx said. It would cut costs by not having to rely on refrigeration, and vaccines could be produced with rudimentary equipment in more precise, targeted numbers. The vaccines could be manufactured and delivered using a disposable patch, like a bandage, which could one day lessen the use of trained personnel and hypodermic needles.

Co-authors of the paper are Weibin Zhou, Albanus Moguche and David Chiu of the UW, and Kaja Murali-Krishna of Emory University.

####

For more information, please click here

Contacts:
Michelle Ma

206-543-2580

Baneyx

206-685-7659

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project