Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New, Effective Method Presented for Investigation of Buckling Behavior of Carbon Nanotubes

Abstract:
Results of studies carried out by Iranian researchers from Gilan University led to the presentation of a reliable and precise mathematical method of studying mechanical behavior of carbon nanotubes, which is independent from Young's modulus and thickness of nanotubes.

New, Effective Method Presented for Investigation of Buckling Behavior of Carbon Nanotubes

Tehran, Iran | Posted on December 19th, 2013

The presented method can help the designing of products based on carbon nanotubes. Carbon nanotubes are among the most important major parts in the production of nanoelectro-mechanical devices due to their unique properties. When a thin structure such as carbon nanotube used in a nanoelectro-mechanical system is subjected to pressure load, a type of instability called buckling appears in the structure. Therefore, it is very important to study their mechanical behavior.

Results showed that continuous classic models predict the critical load higher than the actual amount. As the scale factor increases, critical load decreases in the nanotube. It means the toughness of nanotubes decreases taking into account the effects of scale. The effect of geometry on the stability of nanotube was studied too. It was shown that when the geometric parameter of the ratio of length to diameter increases, or in other words, when the nanotube becomes narrower, scale down has less effects on the critical load due to the high length of the tube in comparison with its internal characteristic length such as bond length. It was also observed that wave number had a great effect on the importance of scale effects on the stability of nanotube.

The researchers will continue the research and they will use the presented method in this research to analyze other mechanical phenomena, including vibrations and flexural behavior in other nanostructures such as nanosheets and nanocones.

Results of the research have been published in details in Composite Structures, vol. 100, January 2013, pp. 323-331. This article is considered as one of the top articles approved by Iran Nanotechnology Initiative Council.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Quantum interference in molecule-surface collisions February 28th, 2025

New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

Announcements

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Researchers are cracking the code on solid-state batteries: Using a combination of advanced imagery and ultra-thin coatings, University of Missouri researchers are working to revolutionize solid-state battery performance February 28th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Ultrafast plasmon-enhanced magnetic bit switching at the nanoscale April 25th, 2025

Next-generation drug delivery innovation! DGIST develops precision therapeutics using exosomes April 25th, 2025

Development of 'transparent stretchable substrate' without image distortion could revolutionize next-generation displays Overcoming: Poisson's ratio enables fully transparent, distortion-free, non-deformable display substrates February 28th, 2025

Leading the charge to better batteries February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project