Home > Press > Radioactivity muddles the alphabet of DNA: Curtin University researchers have shown natural radioactivity within DNA can alter chemical compounds, providing a new pathway for genetic mutation
Abstract:
The research, recently published in Biochimica et Biophysica Acta-General Subjects, for the first time looked at natural radioactivity within human DNA on the atomic-scale.
While radioactivity occurs naturally in our bodies as well as in every living organism across the planet, it was never before thought to affect our DNA in such a direct way.
Using high-performance computers, the research team from Curtin and Los Alamos National Laboratory were able to show radioactivity could alter molecular structures which encode genetic information, creating new molecules that do not belong to the four-letter alphabet of DNA.
Professor Nigel Marks from Curtin's Discipline of Physics and Astronomy and Curtin's Nanochemistry Research Institute said the new molecules may well generate mutations by confusing the replication mechanisms in DNA.
"This work takes an entirely new direction on research into natural radioactivity in biology and raises important questions about genetic mutation," Professor Marks said.
"We have discovered a subtle process that could easily be overlooked by the standard cell repair mechanisms in the body, potentially creating a new pathway for mutations to occur."
Professor Marks said the work was both exciting and unexpected, emerging as a spin-off from an Australian Research Council funded project on nuclear waste.
"As part of the project between Curtin and Los Alamos we developed a suite of computational tools to examine deliberate radioactivity in crystalline solids, only to later realise that the same methods could be applied to natural radioactivity in molecules," he said.
"This direction was an unplanned outcome of our research program - just the way blue skies research should be."
The natural radioactivity in focus involved the decay of carbon atoms, Carbon-14, turning into nitrogen atoms, Nitrogen-14.
Professor Marks said this was one of the most abundant forms of radioactive decay occurring in biological systems. Over a human lifetime, around 50 billion Carbon-14 decays occur within our DNA.
"While it is still not obvious how DNA replication is affected by the presence of chemical compounds that are different to the four-letter alphabet of DNA, it is quite remarkable to consider that Carbon-14 could be a source of genetic mutation that would be impossible to avoid due to the universal presence of radiocarbon in the environment," Professor Marks said.
####
For more information, please click here
Contacts:
Megan Meates
61-892-664-241
Copyright © Curtin University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
The research paper, Carbon-14 decay as a source of non-canonical bases in DNA, is available at:
Related News Press |
Imaging
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Tools
Turning up the signal November 8th, 2024
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Faster than one pixel at a time – new imaging method for neutral atomic beam microscopes developed by Swansea researchers August 16th, 2024
Nanobiotechnology
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The mechanism of a novel circular RNA circZFR that promotes colorectal cancer progression July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||