Home > Press > Scientists Use 3-D Printing Method to Produce Nanocomposite Scaffolds
Abstract:
Iranian researchers from Sharif University of Technology in association with their colleagues from Max Planck Institute, Germany, produced nanocomposite scaffolds for tissue engineering with controlled pores by using indirect three-dimensional printing method.
Cells are naturally surrounded by extracellular matrix (ECM). The matrix supports and guides cellular behavior and its vital functions, including migration, adhesion, proliferation, and differentiation with the help of chemical and physical signals. Therefore, the designing of internal pores and controlling external dimensions of the scaffold with controlled structure is one of the most important effective parameters on the performance of tissue engineering scaffolds used in the treatment of bone damages to guide cellular behavior in interaction with ECM.
In this research, nanocomposite scaffolds with controlled pore structure were produced through indirect three-dimensional printing method. The pores contained various nanoparticles such as titanium dioxide and bioactive glass in micrometric and nanometric size. Growth kinetics of bone tissue was investigated on the product through in-vitro tests. To this end, the sacrificial cast was made with three dimensional structures and its surface was coated with paraffin.
Results of the research showed that the effective interface of particles and cells increase as nanoparticles are added to the polymeric bed due to the high tendency of nanoparticles to accumulate in the surface. Moreover, the nanoparticles affect cell adhesion, proliferation, and differentiation by creating nanotopography, increasing the coarseness and surface roughness.
Results of the research have been published in Journal of Biomedical Materials Research A, vol. 101, issue 10, October 2013, pp. 2796-2806.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Nanomedicine
Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025
Discoveries
Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Announcements
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025
Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Research partnerships
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |