Home > Press > Scientists Use 3-D Printing Method to Produce Nanocomposite Scaffolds
Abstract:
Iranian researchers from Sharif University of Technology in association with their colleagues from Max Planck Institute, Germany, produced nanocomposite scaffolds for tissue engineering with controlled pores by using indirect three-dimensional printing method.
Cells are naturally surrounded by extracellular matrix (ECM). The matrix supports and guides cellular behavior and its vital functions, including migration, adhesion, proliferation, and differentiation with the help of chemical and physical signals. Therefore, the designing of internal pores and controlling external dimensions of the scaffold with controlled structure is one of the most important effective parameters on the performance of tissue engineering scaffolds used in the treatment of bone damages to guide cellular behavior in interaction with ECM.
In this research, nanocomposite scaffolds with controlled pore structure were produced through indirect three-dimensional printing method. The pores contained various nanoparticles such as titanium dioxide and bioactive glass in micrometric and nanometric size. Growth kinetics of bone tissue was investigated on the product through in-vitro tests. To this end, the sacrificial cast was made with three dimensional structures and its surface was coated with paraffin.
Results of the research showed that the effective interface of particles and cells increase as nanoparticles are added to the polymeric bed due to the high tendency of nanoparticles to accumulate in the surface. Moreover, the nanoparticles affect cell adhesion, proliferation, and differentiation by creating nanotopography, increasing the coarseness and surface roughness.
Results of the research have been published in Journal of Biomedical Materials Research A, vol. 101, issue 10, October 2013, pp. 2796-2806.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Nanomedicine
Multiphoton polymerization: A promising technology for precision medicine February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Leading the charge to better batteries February 28th, 2025
Quantum interference in molecule-surface collisions February 28th, 2025
New ocelot chip makes strides in quantum computing: Based on "cat qubits," the technology provides a new way to reduce quantum errors February 28th, 2025
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes
Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023
Simple ballpoint pen can write custom LEDs August 11th, 2023
Disposable electronics on a simple sheet of paper October 7th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |