Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Timing is everything in new nanotechnology for medicine, security and research

J. Paul Robinson
J. Paul Robinson

Abstract:


Tunable Lifetime Multiplexing Using Luminescent Nanocrystals

Yiqing Lu, Jiangbo Zhao, Run Zhang, Yujia Liu, Deming Liu, Ewa M. Goldys, Xusan Yang, Peng Xi, Anwar Sunna, Jie Lu, Yu Shi, Robert C. Leif, Yujing Huo, Jian Shen, James A. Piper, J. Paul Robinson and Dayong Jin

Optical multiplexing plays an important role in applications such as optical data storage, document security, molecular probes and bead assays for personalized medicine. Conventional fluorescent color coding is limited by spectral overlap and background interference, restricting the number of distinguishable identities. Here we show that tunable luminescent lifetimes (t) in the microsecond region can be exploited to code individual upconversion nanocrystals. In a single color band, one can generate more than 10 nanocrystal populations having distinct lifetimes ranging from 25.6 microseconds to 662.4 microseconds, and decode their well-separated lifetime identitites, which are independent from either colors or intensities. Such "t-Dots" potentially suit multi-channel bioimaging, high-throughput cytometry quantification, high-density data storage, as well as security codes to combat counterfeiting. This demonstration extends the optical multiplexing capability by adding the temporal dimension of luminescent signals, opening new opportunities in the life sciences, medicine and data security.

Timing is everything in new nanotechnology for medicine, security and research

West Lafayette, IN | Posted on December 16th, 2013

Researchers working to advance imaging useful to medicine and security are capitalizing on the same phenomenon behind the lingering "ghost" image that appeared on old television screens.

A team of researchers from Purdue University and Macquarie University in Sydney has created a way to control the length of time light from a luminescent nanocrystal lingers, adding a new dimension of time to color and brightness in optical detection technology.

Detection based on the lifetime of the light as well as its specific color, or wavelength, exponentially boosts the number of different combinations that can be created and used as unique signatures, or tags, for biomedical screens. Screens based on this new technology could identify thousands of different target molecules simultaneously, far surpassing the current limits of such screens to roughly 20 different molecules.

"These nanocrystals can form combination codes, like barcodes, to form a vast library of distinguishable molecular probes, which can be used for complex diagnostics," said Dayong Jin, the professor of photonics at Macquarie who led the research. "They could be used for screening tests that can more quickly and accurately identify the cause of infection, residue cancers at an early stage and locate the specific molecular targets for targeted drug therapies."

In addition, light emitted by the new nanocrystals far outlasts that which occurs naturally in biological systems, called autofluorescence. That difference in timing distinctly separates the signal from background noise, said J. Paul Robinson, the professor of cytomics in Purdue's College of Veterinary Medicine and professor in Purdue's Weldon School of Biomedical Engineering who helped lead the study over the last four years.

"The photons emitted by these nanocrystals last 1,000 times longer than the photons emitted by biological systems that cause background noise," said Robinson, who also is director of the Purdue Cytometry Laboratories. "The nanocrystal photons remain, just like the photons that created the 'ghost' images on old television screens that would linger after you turned off the set. A similar phenomenon is happening in these nanocrystals. We can capture this signal after the others have gone dark and obtain incredible resolution."

The team's work is detailed in a paper that will be published in the next issue of Nature Photonics and is currently available online.

Jin led the design and manufacture of the nanoparticles, which the researchers named t-Dots. Robinson led the concept development and biological testing of the detection technology.

Robinson's research focuses on flow cytometry, the analysis of cells that are contained in a liquid flowing past a laser beam. The research team built a time-resolved scanning cytometry system that was able to evaluate the lifetime of the light emitted as well as color and capture the t-Dot signals.

"Particles containing these t-Dots can be easily tailored to bind different antibodies," Robinson said. "A small and portable system could be created to probe for multiple pathogens at once in beverages or food."

The research team successfully layered the nanocrystals with a specific sequence of lifetimes within individual t-Dots to create unique signatures and successfully bound a protein to the t-Dots allowing them to seek out and bind to Giardia lamblia, he said.

Robinson next plans to refine designs of flow cytometry instruments that can read the t-Dot signatures and to explore the biomedical applications of new detection tools.

"Flow cytometry is a diagnostic tool that is used in a variety of applications from health care to homeland security," Robinson said. "It can analyze blood and urine to diagnose disease, or can analyze a sample taken from a surface or the air mixed with water to detect food-borne pathogens or chemical agents. With the t-Dot 'nano-tags,' we have the ability to screen for many targets at once, and only one small volume of sample will be needed to glean a vast amount of information in a very short amount of time."

The nanocrystals are tiny clusters of sodium, yttrium and fluoride ions with added trace amounts of ions of ytterbium and the blue-emitting rare earth element thulium. The ytterbium ion serves as a trigger to the reaction that controls the thulium fluorescence, and the researchers controlled the length of time this light is emitted by varying the distance between the two.

When a laser strikes a nanocrystal it triggers a reaction that leads to the emission of a photon at a visible wavelength, or a burst of visible light.

The t-Dots also could be used to create invisible and nearly impossible to forge marks on documents, items or currency as an anti-counterfeit measure, said Yiqing Lu, a senior Macquarie University Research Fellow in Photonics.

"By applying t-Dots to any surface, we can leave a secret message or mark on any product, which will only be revealed by a specially designed scanner," Lu said. "This has huge potential in confirming the authenticity of any product, from pharmaceutical drugs to medical courier supplies."

The research team at Macquarie is investigating this application as well as the ability to layer the t-Dots to create higher density data storage, he said.

In addition to Jin, Lu and Robinson, paper co-authors include Jiangbo Zhao, Run Zhang, Yujia Liu, Deming Liu, Ewa M. Goldys, Jie Lu, Anwar Sunna, Yu Shi and James A. Piper of Macquarie; Xusan Yang and Peng Xi of Peking University; Robert C. Leif of Newport Instruments; Yujing Huo of Tsinghua University; and Jian Shen of Olympus Australia.

An ARC Discovery Grant led by Piper and Jin at the Macquarie Advanced Cytometry Labs funded this work.

####

For more information, please click here

Contacts:
Writer:
Elizabeth Gardner
765-494-2081


Media contact
Macquarie University:
Amy Macintyre
02-9850-4051


Sources:
J. Paul Robinson
765-494-0757


Dayong Jin
+61 2 98504168


Yiqing Lu
+61 2 98504169

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Imaging

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Turning up the signal November 8th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Nanomedicine

Ben-Gurion University of the Negev researchers several steps closer to harnessing patient's own T-cells to fight off cancer June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Self-propelled protein-based nanomotors for enhanced cancer therapy by inducing ferroptosis June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Tools

Portable Raman analyzer detects hydrogen leaks from a distance: Device senses tiny concentration changes of hydrogen in ambient air, offering a dependable way to detect and locate leaks in pipelines and industrial systems April 25th, 2025

Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025

New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

Food/Agriculture/Supplements

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

Silver nanoparticles: guaranteeing antimicrobial safe-tea November 17th, 2023

Night-time radiative warming using the atmosphere November 17th, 2023

Photonics/Optics/Lasers

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Following the folds – with quantum technology: The connection between a crumpled sheet of paper and quantum technology: A research team at the EPFL in Lausanne (Switzerland) and the University of Konstanz (Germany) uses topology in microwave photonics to make improved systems of May 16th, 2025

Programmable electron-induced color router array May 14th, 2025

Research partnerships

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project