Home > Press > 3-D Analysis of Thermo-elastic Behavior of Composite Plate Graded with Carbon Nanotubes
Abstract:
An Iranian researcher from Tarbiat Modarres University in association with another researcher from City University of Hong Kong studied three-dimensional thermo-elastic behavior of rectangular composite plates graded with carbon nanotubes.
 Carrying out the study, they obtained and solved analytically differential equations related to temperature distribution and thermo-elastic in the plates.
In this research, the behavior of a composite plate graded with carbon nanotube (FG CNTRC), whose surfaces were subjected to thermal and mechanical loads, was investigated based on 3-D theory of elasticity by using Fourier series expansion through state space method. The researchers then obtained equations on thermo-elastic behavior of the structure by carrying out analytical studying on the free and static vibration of the structure subjected to mechanical load in three dimensions. Then, they proposed an analytical method to solve the equations, and they finally investigated the effect of various parameters such as volume ratio and the arrangement of carbon nanotubes on thermo-elastic behavior of the structure.
The accuracy and validity of the results obtained in the research were confirmed by comparing them with the results obtained from numerical results reported in articles.
Results of the research showed that the density of carbon nanotubes and their arrangement have significant effect on strength behavior and temperature distribution in the structure. The effect of volume ratio of carbon nanotube on thermo-elastic behavior across the length is much more than that in other directions. In addition, increasing the size in all dimensions increases all thermo-elastic behaviors as well.
The performance of the structure cannot be relied on at high temperature conditions without the use of the analysis. However, the mentioned structure can be designed to perform at desirable thermal conditions as a result of the research.
Results of the research have been published in details in Composite Structures, vol. 106, July 2013, pp. 873-881.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings
    Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Materials/Metamaterials/Magnetoresistance
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||