Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 3-D Analysis of Thermo-elastic Behavior of Composite Plate Graded with Carbon Nanotubes

Abstract:
An Iranian researcher from Tarbiat Modarres University in association with another researcher from City University of Hong Kong studied three-dimensional thermo-elastic behavior of rectangular composite plates graded with carbon nanotubes.

3-D Analysis of Thermo-elastic Behavior of Composite Plate Graded with Carbon Nanotubes

Tehran, Iran | Posted on December 12th, 2013

Carrying out the study, they obtained and solved analytically differential equations related to temperature distribution and thermo-elastic in the plates.

In this research, the behavior of a composite plate graded with carbon nanotube (FG CNTRC), whose surfaces were subjected to thermal and mechanical loads, was investigated based on 3-D theory of elasticity by using Fourier series expansion through state space method. The researchers then obtained equations on thermo-elastic behavior of the structure by carrying out analytical studying on the free and static vibration of the structure subjected to mechanical load in three dimensions. Then, they proposed an analytical method to solve the equations, and they finally investigated the effect of various parameters such as volume ratio and the arrangement of carbon nanotubes on thermo-elastic behavior of the structure.

The accuracy and validity of the results obtained in the research were confirmed by comparing them with the results obtained from numerical results reported in articles.

Results of the research showed that the density of carbon nanotubes and their arrangement have significant effect on strength behavior and temperature distribution in the structure. The effect of volume ratio of carbon nanotube on thermo-elastic behavior across the length is much more than that in other directions. In addition, increasing the size in all dimensions increases all thermo-elastic behaviors as well.

The performance of the structure cannot be relied on at high temperature conditions without the use of the analysis. However, the mentioned structure can be designed to perform at desirable thermal conditions as a result of the research.

Results of the research have been published in details in Composite Structures, vol. 106, July 2013, pp. 873-881.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project