Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Decay used to construct quantum information

This is an artist's impression of the experiment. Four ions are trapped on a line. The outer Magnesium ions (green) cools the system by emitting light. Lasers are used to prepare the inner Beryllium ions (red) in an entangled state where one can not understand the state of the particles individually but have to consider the two ions as a whole. As opposed to previous experiments also the latter process happens by the emission of light.

Credit NIST
This is an artist's impression of the experiment. Four ions are trapped on a line. The outer Magnesium ions (green) cools the system by emitting light. Lasers are used to prepare the inner Beryllium ions (red) in an entangled state where one can not understand the state of the particles individually but have to consider the two ions as a whole. As opposed to previous experiments also the latter process happens by the emission of light.

Credit NIST

Abstract:
Usually, when researchers work with quantum information, they do everything they can to prevent the information from decaying. Now researchers at the Niels Bohr Institute, among others, have flipped things around and are exploiting the decay to create the so-called entanglement of atomic systems, which is the foundation for quantum information processing. The results are published in the scientific journal, Nature.

Decay used to construct quantum information

Copenhagen, Denmark | Posted on November 26th, 2013

"When working with quantum information, you would normally seek to isolate the system from the environment in order to not get a disturbing interaction that can destroy the fragile quantum state. But this is very difficult to avoid completely. So we thought that you could perhaps take the opposite approach and instead of seeing decay as the enemy, look at it as a friend and take advantage of it," explains Anders Søndberg Sørensen, a professor of quantum optics at the Niels Bohr Institute at the University of Copenhagen.

Electrons leaping hither and thither

The problem is that the quantum system is affected by the environment and exchanges energy with it. The electrons in the atoms jump from one energy state to another and researchers consider this kind of jump to be decay, because the information stored in the electrons disappears into its surroundings.

"But with our method we let the quantum system 'talk' with its surroundings and create a control of the electrons' jumps so that they are precisely in the state we want them to be in, and in that way we make use of the interaction with the environment," explains PhD student Florentin Reiter, who developed the theoretical model for the method together with Anders Sørensen.

The research is a collaboration with the experimental research group lead by David Wineland (recipient of the Nobel Prize in physics last year) at the National Institute for Standards and Technology in Boulder Colorado, USA.

Kicking the electrons into place

The method is based on a chain of ions comprised of magnesium and beryllium. They are cooled down to near absolute zero at minus 273 degrees C. The magnesium atoms are just there as a kind of cooling element in the chain of ions, while the beryllium atoms are the active elements. Entanglement is created between the electrons of the beryllium ions using carefully controlled laser light.

"The trick lies in the combination of laser light," explains Florentin Reiter and continues "the electrons can be in four energy states and if they jump around and land in a 'wrong' state, they are simply 'kicked' by the laser and we continue until they are where they are supposed to be. In that way there is perfect entanglement. Unlike in the past, when you had to use carefully designed laser pulses to create entanglement, researchers can now just turn on the laser and grab a cup of coffee and when they come back the electrons are in the correct state."

Up until this point, the decay of quantum information has been the biggest obstacle to making a quantum computer. The new experiment is the first time the problem has been turned on its head and the decay has been used constructively in a quantum computer. The researchers hope that this might be a way to overcome some of the problems that have previously made it difficult to make quantum computers. The researchers are now working to make more advanced quantum information processors based on the same ideas. In particular, they hope that similar techniques can be used to correct errors in a quantum computer.

####

For more information, please click here

Contacts:
Gertie Skaarup

45-35-32-53-20

Anders Søndberg Sørensen
Professor, Quantum Optics
Niels Bohr Institute
University of Copenhagen
+45 3532-5240
+45 2466-1377


Florentin Reiter
PhD student
Quantum Optics
Niels Bohr Institute
University of Copenhagen
0046-7232-70262

Copyright © University of Copenhagen - Niels Bohr Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Laboratories

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Physics

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

New method cracked for high-capacity, secure quantum communication July 5th, 2024

Finding quantum order in chaos May 17th, 2024

Govt.-Legislation/Regulation/Funding/Policy

Giving batteries a longer life with the Advanced Photon Source: New research uncovers a hydrogen-centered mechanism that triggers degradation in the lithium-ion batteries that power electric vehicles September 13th, 2024

New discovery aims to improve the design of microelectronic devices September 13th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Single atoms show their true color July 5th, 2024

Quantum Computing

New quantum encoding methods slash circuit complexity in machine learning November 8th, 2024

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Photonics/Optics/Lasers

New microscope offers faster, high-resolution brain imaging: Enhanced two-photon microscopy method could reveal insights into neural dynamics and neurological diseases August 16th, 2024

Groundbreaking precision in single-molecule optoelectronics August 16th, 2024

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Single atoms show their true color July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project