Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Iron Oxide Nanoparticles Help Investigation of Cognitive Diseases

Abstract:
Iranian researchers from Islamic Azad University, Tehran Branch, in association with researchers from Institute of Biochemistry & Biophysics (IBB) of University of Tehran carried out in vitro an investigation into the changes in the structure of proteins inside brain cells and the interactions of the proteins using iron oxide nanoparticles.

Iron Oxide Nanoparticles Help Investigation of Cognitive Diseases

Tehran, Iran | Posted on November 21st, 2013

The progress of cognitive diseases that do not have any known definite treatment can be prevented if a treatment method is designed and optimized for cognitive diseases such as Alzheimer's-based on controlling metabolism processes of iron oxide in brain cells.

The research showed that microtubules can create magnetic field around themselves due to their dynamic properties and electrical charge. Therefore, they can play role in the transference of electrical signals in brain cells (neurons). It can be said that the protein plays an important role in the transference and probably in saving date in the brain. The malfunction in the performance of microtubules is one of the reasons for the appearance of cognitive diseases such as Alzheimer's.

Iron oxide nanoparticles were firstly produced in this research. Then, microtubule protein was extracted from the brain of a newly-died sheep, and its activity was studied through turbidimetry method. Next, the researchers studied the interaction between nanoparticles and microtubule and tau protein (a protein which is effective in the structural and functional stability of microtubules).

Results of the research showed that iron oxide magnetic nanoparticles and microtubules existing in the neurons can have magnetic interactions with each other, which is essential for the transference and conservation of brain data. However, if the nanoparticles are accumulated in the brain, which can be caused due to the malfunction of iron metabolism in brain cells and due to the improper conservation of iron in a protein called ferritin, the abovementioned interaction may be damaged, and nanoparticles connect with microtubules and tau protein, which results in the instability of microtubular polymers.

A part of the results of the research have been published in February 2013 in Journal of Biological Inorganic Chemistry, vol. 18, issue 3, pp. 357-369.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project