Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Testing smart plastics in real time

onBOX uses a sensor system to test the composition of plastics enriched with nanoparticles. The unit is mounted directly onto the mixing plant, and is able to monitor particle distribution. © Fraunhofer ICT
onBOX uses a sensor system to test the composition of plastics enriched with nanoparticles. The unit is mounted directly onto the mixing plant, and is able to monitor particle distribution.

© Fraunhofer ICT

Abstract:
Nano additives can make plastics scratch and flame proof, or give them antibacterial properties. For this to work, the particle distribution within the plastic compound must be absolutely correct. A new device is now able to test the distribution in real time.

Testing smart plastics in real time

Muenchen, Germany | Posted on November 19th, 2013

We encounter functional plastics parts whenever we open the refrigerator door. Besides being easy to clean and ergonomically shaped, the material built into a refrigerator also have antibacterial properties, thanks to nano-sized additives mixed in with the pellets of plastic during the manufacturing process. Parts like these can be modified to have all sorts of different properties, which vary according to the type and shape of the particles of additive and their distribution within the polymer compound. Even though these particles are less than 100 nanometers across, it takes just a tiny quantity to make the plastic antibacterial, scratch proof and flame retardant, electrically or thermally conductive, or to give it greater mechanical rigidity. For these properties to function as intended, the ratio of pellets to additives and the overall particle distribution has to be exactly right. Until now, checking this has always been a very complicated and time-consuming process that had to be carried out after the material is made. Manufacturers are often only able to achieve the desired plastic formula after mixing several trial batches, which slows down the production process and wastes material.

The Fraunhofer Institute for Chemical Technology ICT in Pfinztal near Karlsruhe has been working with other partners to develop a tool for characterizing polymer nanocomposites during the ongoing production process itself. "This is not only more cost-effective in terms of material and time, it also helps us to improve the quality of the properties that the added nanoparticles bring to the polymer," says Irma Mikonsaari of the ICT.

On-the-spot analysis directly at source

onBOX is simply mounted to the exit nozzle of the conveyor, where its sensors analyze and characterize the polymer compound while it is still in the mixing plant. The sensors use a combination of technologies including spectroscopy, ultrasound and microwaves to test the composition of the polymer-nanoparticle compound. They measure its viscosity, pressure and particle distribution, including any possible fluctuations in concentration, while simul- taneously measuring the compound's temperature and its thermal and electrical conductivity. A computer then compares this data to the system's command variables and processes it inside an artificial neural network. The computer determines the precise mixing ratios needed to achieve the intended effect as well as the manufacturing process this requires, and feeds this information directly to the machine's control system. "The result is that the network of nanoparticles develops just as we want it to," says Mikonsaari, "with optimal distribution of the individual particles." She adds: "We are able to characterize the state of the polymer melt as it is being discharged through the nozzle."

Mikonsaari will be presenting onBOX on November 19, 2013 at the NanoOnSpect workshop being held at the ICT in Pfinztal, where it will be attached to a pilot plant able to process 30 kilograms of polymer compound. ICT researchers will also be reporting on the current status of the EU-funded NanoOnSpect project. Those invited to attend include raw material suppliers, plastics manufacturers and companies that process and reuse smart plastics.

NanoOnSpect was launched in 2011 and will run for a total of four years. The consortium draws on the scientific community, associations and industrial partners and was set up with the aim of optimizing manufacturing processes for smart plastics that feature nanoparticle additives. Project partners are seeking to achieve this in two ways: on the one hand, they are developing technologies that help to improve characterization of the size, structure and distribution of the nanoparticle additives as well as the properties of the polymer compounds. On the other, they are designing a new mixing procedure that combines the advantages of existing processes. "onBOX is a very tangible product of our research from which industry stands to benefit immediately," says Mikonsaari, pointing out the relevance of the new tool and its scope for practical application.

####

About Fraunhofer-Gesellschaft
The Fraunhofer-Gesellschaft is the leading organization for institutes of applied research in Europe, undertaking contract research on behalf of industry, the service sector and the government. Commissioned by customers in industry, it provides rapid, economical and immediately applicable solutions to technical and organizational problems. Within the framework of the European Union's technology programs, the Fraunhofer-Gesellschaft is actively involved in industrial consortiums which seek technical solutions to improve the competitiveness of European industry.


The Fraunhofer-Gesellschaft

Research of practical utility lies at the heart of all activities pursued by the Fraunhofer-Gesellschaft. Founded in 1949, the research organization undertakes applied research that drives economic development and serves the wider benefit of society. Its services are solicited by customers and contractual partners in industry, the service sector and public administration. The organization also accepts commissions from German federal and Laender ministries and government departments to participate in future-oriented research projects with the aim of finding innovative solutions to issues concerning the industrial economy and society in general.

Applied research has a knock-on effect that extends beyond the direct benefits perceived by the customer: Through their research and development work, the Fraunhofer Institutes help to reinforce the competitive strength of the economy in their local region, and throughout Germany and Europe. They do so by promoting innovation, accelerating technological progress, improving the acceptance of new technologies, and not least by disseminating their knowledge and helping to train the urgently needed future generation of scientists and engineers.

As an employer, the Fraunhofer-Gesellschaft offers its staff the opportunity to develop the professional and personal skills that will allow them to take up positions of responsibility within their institute, in other scientific domains, in industry and in society. Students working at the Fraunhofer Institutes have excellent prospects of starting and developing a career in industry by virtue of the practical training and experience they have acquired.

At present, the Fraunhofer-Gesellschaft maintains more than 80 research units, including 56 Fraunhofer Institutes, at 40 different locations in Germany. The majority of the 12,500 staff are qualified scientists and engineers, who work with an annual research budget of €1.2 billion. Of this sum, more than €1 billion is generated through contract research. Two thirds of the Fraunhofer-Gesellschaft’s contract research revenue is derived from contracts with industry and from publicly financed research projects. Only one third is contributed by the German federal and Laender governments in the form of institutional funding, enabling the institutes to work ahead on solutions to problems that will not become acutely relevant to industry and society until five or ten years from now.

Affiliated research centers and representative offices in Europe, the USA and Asia provide contact with the regions of greatest importance to present and future scientific progress and economic development.

The Fraunhofer-Gesellschaft is a recognized non-profit organization which takes its name from Joseph von Fraunhofer (1787-1826), the illustrious Munich researcher, inventor and entrepreneur.

For more information, please click here

Contacts:
Irma Mikonsaari
Fraunhofer Institute for Chemical Technology ICT
+49 721 4640-413

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Nanomedicine

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery: NYU Abu Dhabi researchers develop novel covalent organic frameworks for precise cancer treatment delivery September 13th, 2024

Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024

Nanobody inhibits metastasis of breast tumor cells to lung in mice: “In the present study we describe the development of an inhibitory nanobody directed against an extracellular epitope present in the native V-ATPase c subunit.” August 16th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Materials/Metamaterials/Magnetoresistance

New material to make next generation of electronics faster and more efficient With the increase of new technology and artificial intelligence, the demand for efficient and powerful semiconductors continues to grow November 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project