Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Revisiting quantum effects in MEMS: New calculations shows that the influence of quantum effects on the operating conditions of nanodevices has, until now, been overestimated

Abstract:
Micro- and nano-electromechanical devices, referred to as MEMS and NEMS, are ubiquitous. These nanoscale machines with movable parts are used, for example, to trigger cars' airbags following a shock. They can also be found in smartphones, allowing them to detect how to adequately display the screen for the viewer. The trouble is that, as their size decreases, forces typically experienced at the quantum level start to matter in these nanodevices. Mexican physicists have studied the mechanical and electrical stability of MEMS and NEMS, depending on the plate thickness and the nature of the material used. The results have now been published in EPJ B by Raul Esquivel-Sirvent and Rafael Perez-Pascual from the National Autonomous University of Mexico, in Mexico City.

Revisiting quantum effects in MEMS: New calculations shows that the influence of quantum effects on the operating conditions of nanodevices has, until now, been overestimated

Heidelberg, Germany and New York, NY | Posted on November 15th, 2013

Forces of quantum origin become important at the scale of these devices shrinks; this is particularly true for the so-called Casimir force. This force leads to van der Waals interactions, which represent the sum of all intra-molecular interactions. These include attractions and repulsions between atoms, molecules, and surfaces, as well as other intermolecular forces, and are caused by correlations in the fluctuating polarisations of nearby particles.

To investigate the stability of nanodevices, Esquivel-Sirvent and his colleague used the classical calculation of the Casimir force, referred to as the Lifshitz formula, combined with the theory of stability of micro- and nanoscale machines.

In this study, the authors show that previous works overestimated the operating conditions of the devices by not taking into account this Casimir/van der Waals effect.

In addition, they demonstrate that the stability of these devices under the Casimir force changes depending on the nature and thickness of the metal coatings used. It also depends on the variation of concentration of the free charges in the silicon used, which changes with doping levels.

####

For more information, please click here

Contacts:
Franziska Hornig
tel. +49 6221 4878414

Copyright © Springer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Reference:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

NEMS

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

One string to rule them all April 17th, 2018

MEMS

Bosch launches longevity program for industrial and IoT applications: High-performance accelerometer, IMU and pressure sensor with 10-year availability July 23rd, 2020

CEA-Leti Develops Tiny Photoacoustic-Spectroscopy System For Detecting Chemicals & Gases: Paper at Photonics West to Present Detector that Could Cost 10x Less Than Existing Systems and Prompt Widespread Use of the Technology February 4th, 2020

MEMS & Sensors Executive Congress Technology Showcase Finalists Highlight Innovations in Automotive, Biomedical and Consumer Electronics: MSIG MEMS & Sensors Executive Congress – October 22-24, 2019, Coronado, Calif. October 1st, 2019

ULVAC Launches Revolutionary PZT Piezoelectric Thin-film Process Technology and HVM Solution for MEMS Sensors/Actuators: Enabling Reliable, High-quality Film Production for Next Generation Devices August 16th, 2019

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Quantum nanoscience

Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024

Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project