Home > Press > Beyond quantum simulation: JILA physicists create 'crystal' of spin-swapping ultracold gas molecules
![]()  | 
| This is an illustration of the interaction energies between ultracold potassium-rubidium molecules trapped in a lattice made of intersecting laser beams. The colors indicate each molecule's interaction with the molecule located in the center of the lattice (green), for a specific magnetic-field direction (purple arrow). Blue indicates attractive interactions, and red indicates repulsive interactions. Darker colors indicate higher interaction energy.
 Credit: Jacob Covey, JILA  | 
Abstract:
Physicists at JILA have created a crystal-like arrangement of ultracold gas molecules that can swap quantum "spin" properties with nearby and distant partners. The novel structure might be used to simulate or even invent new materials that derive exotic properties from quantum spin behavior, for electronics or other practical applications.
Described in a Nature paper* posted online on Sept. 18, 2013, the JILA experiment is the first to record ultracold gas molecules exchanging spins at a distance, a behavior that may be similar to that of intriguing solids such as "frustrated" magnets with competing internal forces, or high-temperature superconductors, which transmit electricity without resistance. The new results build on the same JILA team's prior creation of the first molecular quantum gases and demonstrations of ultracold chemistry.**
JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder.
"One of the main thrusts for our cold molecules research was to realize this interaction, so this is a major breakthrough," NIST/JILA Fellow Jun Ye says. "We can now explore very exotic new phases of quantum systems." NIST/JILA Fellow Deborah Jin points out that "these interactions are advantageous for creating models of quantum magnetism because they do not require the molecules to move around" the crystal structure.
The new JILA crystal has advantages over other experimental quantum simulators, which typically use atoms. Molecules, made of two or more atoms, have a broader range of properties, and thus, might be used to simulate more complex materials. Jin and Ye are especially interested in using the structure to create new materials not found in nature. An example might be topological insulators—a hot topic in physics—which might transmit data encoded in various spin patterns in future transistors, sensors or quantum computers.
The molecules used in the JILA experiments are made of one potassium atom bonded to one rubidium atom. The molecules are polar, with a positive electric charge at the rubidium end and a negative charge at the potassium end. This feature means the molecules can interact strongly and can be controlled with electric fields.
In the latest experiment, about 20,000 molecules were trapped in an optical lattice, an ordered pattern that looks like a stack of egg cartons created by intersecting laser beams. The lattice was only partly filled, with about one molecule per every 10 lattice wells. The lattice suppressed the molecules' travel and chemical reactions, allowing their internal properties to guide interactions.
The JILA team used microwave pulses to manipulate the molecules' spins, or natural rotations around an axis—similar to a spinning top—to create a "superposition" of two opposite spins at the same time. Scientists then observed oscillating patterns in the average spin of all the molecules, as well as a falloff or decay in the spin signal over time, indicating the molecules were swapping spins.
Scientists calculated the interaction energy that each molecule experiences with all other molecules in the lattice, with the energy intensity depending on the distance and angle between pairs (see graphic). JILA theorist Ana Maria Ray's modeling of spin oscillations and time periods agreed with the experimental measurements. Ye says the spin-swapping interactions "entangle" the molecules, a signature feature of the quantum world that links the properties of physically separated particles.
The results are expected to open up a new field in which scientists create customized molecular spin models in solid-like structures held in place by the lattice. JILA scientists plan to fill the lattice more fully and add an external electric field to increase the variety of spin models that can be created.
###
The research was funded by NIST, the National Science Foundation, the Air Force Office of Scientific Research, the Army Research Office, the Department of Energy and the Defense Advanced Research Projects Agency.
* B. Yan, S.A. Moses, B. Gadway, J.P. Covey, K.R.A. Hazzard, A.M. Rey, D.S. Jin and J. Ye. Realizing a lattice spin model with polar molecules. Nature. Advance Online Publication, Sept. 18, 2013.
####
For more information, please click here
Contacts:
Laura Ost
303-497-4880
Copyright © National Institute of Standards and Technology (NIST)
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links | 
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Laboratories
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Physics
    Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Discoveries
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
    Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Military
    Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
    Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
    Single atoms show their true color July 5th, 2024
    NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
Quantum nanoscience
    ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
    Programmable electron-induced color router array May 14th, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||