Home > Press > Dartmouth researchers develop molecular switch that changes liquid crystal colors: Nanotechnology tool may help in in detecting harmful gases, pathogens, explosives
Abstract:
Dartmouth researchers have developed a molecular switch that changes a liquid crystal's readout color based on a chemical input. This new development may open the way for using liquid crystals in detecting harmful gases, pathogens, explosives and other chemical substances.
One of the challenges in the field of molecular switches and machines is the translation of molecular level motion into macroscopic level events by harnessing light or chemical energy -- think of a molecular-sized light switch that can be turned on and off. With an actual light switch, this can be easily done by hard wiring the switch to a light source, but doing this at the nanoscale is challenging.
In their study, the Dartmouth researchers used liquid crystals such as the ones in LCD (liquid crystal display) monitors and TV screens to address this challenge. They synthesized a pH activated molecular switch that can control the long range assembly of a commercially available liquid crystal called NP5. This manipulation changed the readout color of NP5 from purple to green depending on the applied pH, confirming the molecular level motion is responsible for the change in the photophysical properties of the liquid crystal.
The findings open the way for researchers to design molecular switches that produce different liquid crystal readout colors when harmful chemical substances are detected. If these liquid crystals are used as pixels - similar to the ones in LCD screens - researchers may be able to bunch them together and develop groups of sensors that can quickly analyze and detect hazardous materials.
Ivan Aprahamian, a co-author and professor of chemistry, is available to comment at . More information about his research is available at Dartmouth Now.
####
For more information, please click here
Contacts:
John Cramer
603-646-9130
Copyright © Dartmouth College
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related Links |
The findings appear in the journal Angewandte Chemie. A PDF of the study is available on request:
| Related News Press |
News and information
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Display technology/LEDs/SS Lighting/OLEDs
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Discoveries
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Announcements
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Next-generation quantum communication October 3rd, 2025
"Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Spinel-type sulfide semiconductors to operate the next-generation LEDs and solar cells For solar-cell absorbers and green-LED source October 3rd, 2025
Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
Homeland Security
The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023
Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021
Highly sensitive dopamine detector uses 2D materials August 7th, 2020
Military
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Single atoms show their true color July 5th, 2024
NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024
|
|
||
|
|
||
| The latest news from around the world, FREE | ||
|
|
||
|
|
||
| Premium Products | ||
|
|
||
|
Only the news you want to read!
Learn More |
||
|
|
||
|
Full-service, expert consulting
Learn More |
||
|
|
||