Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Dartmouth researchers develop molecular switch that changes liquid crystal colors: Nanotechnology tool may help in in detecting harmful gases, pathogens, explosives

Abstract:
Dartmouth researchers have developed a molecular switch that changes a liquid crystal's readout color based on a chemical input. This new development may open the way for using liquid crystals in detecting harmful gases, pathogens, explosives and other chemical substances.

Dartmouth researchers develop molecular switch that changes liquid crystal colors: Nanotechnology tool may help in in detecting harmful gases, pathogens, explosives

Hanover, NH | Posted on August 26th, 2013

One of the challenges in the field of molecular switches and machines is the translation of molecular level motion into macroscopic level events by harnessing light or chemical energy -- think of a molecular-sized light switch that can be turned on and off. With an actual light switch, this can be easily done by hard wiring the switch to a light source, but doing this at the nanoscale is challenging.

In their study, the Dartmouth researchers used liquid crystals such as the ones in LCD (liquid crystal display) monitors and TV screens to address this challenge. They synthesized a pH activated molecular switch that can control the long range assembly of a commercially available liquid crystal called NP5. This manipulation changed the readout color of NP5 from purple to green depending on the applied pH, confirming the molecular level motion is responsible for the change in the photophysical properties of the liquid crystal.

The findings open the way for researchers to design molecular switches that produce different liquid crystal readout colors when harmful chemical substances are detected. If these liquid crystals are used as pixels - similar to the ones in LCD screens - researchers may be able to bunch them together and develop groups of sensors that can quickly analyze and detect hazardous materials.

Ivan Aprahamian, a co-author and professor of chemistry, is available to comment at . More information about his research is available at Dartmouth Now.

####

For more information, please click here

Contacts:
John Cramer

603-646-9130

Copyright © Dartmouth College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The findings appear in the journal Angewandte Chemie. A PDF of the study is available on request:

Related News Press

News and information

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Enhancing electron transfer for highly efficient upconversion: OLEDs Researchers elucidate the mechanisms of electron transfer in upconversion organic light-emitting diodes, resulting in improved efficiency August 16th, 2024

Efficient and stable hybrid perovskite-organic light-emitting diodes with external quantum efficiency exceeding 40 per cent July 5th, 2024

New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications July 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Discoveries

Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Announcements

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Turning up the signal November 8th, 2024

Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024

Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024

Nanotechnology: Flexible biosensors with modular design November 8th, 2024

Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024

Homeland Security

The picture of health: Virginia Tech researchers enhance bioimaging and sensing with quantum photonics June 30th, 2023

Sensors developed at URI can identify threats at the molecular level: More sensitive than a dog's nose and the sensors don't get tired May 21st, 2021

UCF researchers generate attosecond light from industrial laser: The ultrafast measurement of the motion of electrons inside atoms, molecules and solids at their natural time scale is known as attosecond science and could have important implications in power generation, chemical- August 25th, 2020

Highly sensitive dopamine detector uses 2D materials August 7th, 2020

Military

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project