Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Researchers figure out how to 'grow' carbon nanotubes with specific atomic structures: From plastics to silicon to nanotubes? Study describes breakthrough in next-generation material

Abstract:
Move over, silicon. In a breakthrough in the quest for the next generation of computers and materials, researchers at USC have solved a longstanding challenge with carbon nanotubes: how to actually build them with specific, predictable atomic structures.

Researchers figure out how to 'grow' carbon nanotubes with specific atomic structures: From plastics to silicon to nanotubes? Study describes breakthrough in next-generation material

Los Angeles, CA | Posted on August 26th, 2013

"We are solving a fundamental problem of the carbon nanotube," said Chongwu Zhou, professor in the Ming Hsieh Department of Electrical Engineering at the USC Viterbi School of Engineering and corresponding author of the study published August 23 in the journal Nano Letters. "To be able to control the atomic structure, or chirality, of nanotubes has basically been our dream, a dream in the nanotube field."

If this is an age built on silicon, then the next one may be built on carbon nanotubes, which have shown promise in everything from optics to energy storage to touch screens. Not only are nanotubes transparent, but this research discovery on how to control the atomic structure of nanotubes will pave the way for computers that are smaller, faster and more energy efficient than those reliant on silicon transistors.

"We are now working on scale up the process," Zhou said. "Our method can revoutionize the field and significantly push forward the real applications of nanotube in many fields."

Until now, scientists were unable to "grow" carbon nanotubes with specific attributes — say metallic rather than semiconducting — instead getting mixed, random batches and then sorting them. The sorting process also shortened the nanotubes significantly, making the material less practical for many applications.

For more than three years, the USC team has been working on the idea of using these short sorted nanotubes as "seeds" to grow longer nanotubes, extending them at high temperatures to get the desired atomic structure.

A paper last year by the same team in Nature Communications outlined the technique, and in the current Nano Letters paper, the researchers report on their latest major success: identifying the "growth recipes" for building carbon nanotubes with specific atomic structures.

"We identify the mechanisms required for mass amplification of nanotubes," said co-lead author Jia Liu, a doctoral student in chemistry at the USC Dornsife College of Letters, Arts and Sciences, recalling the moment when, alone in a dark room, she finally saw the spectral data supporting their method. "It was my Eureka moment."

"To understand nanotube growth behaviors allows us to produce larger amounts of nanotubes and better control that growth," she continued.

Each defined type of carbon nanotube has a frequency at which it expands and contracts. The researchers showed that the newly grown nanotubes had the same atomic structure by matching the Raman frequency.

"This is a very exciting field, and this was the most difficult problem," said co-lead author Bilu Liu, a postdoctoral research associate at the USC Viterbi School of Engineering. "I met Professor Zhou [senior author of the paper] at a conference and he said he wanted to tackle the challenge of controlling the atomic structure of nanotubes. That's what brought me to his lab, because it was the biggest challenge."

In addition, the study found that nanotubes with different structures also behave very differently during their growth, with some nanotube structures growing faster and others growing longer under certain conditions.

"Previously it was very difficult to control the chirality, or atomic structure, of nanotubes, particularly when using metal nanoparticles," Bilu Liu said. "The structures may look quite similar, but the properties are very different. In this paper we decode the atomic structure of nanotubes and show how to control precisely that atomic structure."

Additional authors of the study are Jialu Zhang of USC and Xiaomin Tu and Ming Zheng of the National Institute of Standards and Technology,.

The research was funded by the Office of Naval Research and the Defense Threat Reduction Agency of the U.S. Department of Defense.

####

For more information, please click here

Contacts:
Suzanne Wu

213-740-0252

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Chip Technology

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Programmable electron-induced color router array May 14th, 2025

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Nanotubes/Buckyballs/Fullerenes/Nanorods/Nanostrings

Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Innovative biomimetic superhydrophobic coating combines repair and buffering properties for superior anti-erosion December 13th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Military

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025

Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025

Single atoms show their true color July 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project