Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UGA researchers use nanoparticles to fight cancer

Shanta Dhar, right, and Sean Marrache
Shanta Dhar, right, and Sean Marrache

Abstract:
Researchers at the University of Georgia are developing a new treatment technique that uses nanoparticles to reprogram immune cells so they are able to recognize and attack cancer. The findings were published recently in the early online edition of ACS Nano.

UGA researchers use nanoparticles to fight cancer

Athens, GA | Posted on August 14th, 2013

The human body operates under a constant state of martial law. Chief among the enforcers charged with maintaining order is the immune system, a complex network that seeks out and destroys the hordes of invading bacteria and viruses that threaten the organic society as it goes about its work.

The immune system is good at its job, but it's not perfect. Most cancerous cells, for example, are able to avoid detection by the immune system because they so closely resemble normal cells, leaving the cancerous cells free to multiply and grow into life-threatening tumors while the body's only protectors remain unaware.

Shanta Dhar and her colleagues are giving the immune system a boost through their research.

"What we are working on is specifically geared toward breast cancer," said Dhar, the study's co-author and an assistant professor of chemistry in the UGA Franklin College of Arts and Sciences. "Our paper reports for the first time that we can stimulate the immune system against breast cancer cells using mitochondria-targeted nanoparticles and light using a novel pathway."

In their experiments, Dhar and her colleagues exposed cancer cells in a petri dish to specially designed nanoparticles 1,000 times finer than the width of a human hair. The nanoparticles invade the cell and penetrate the mitochondria—the organelles responsible for producing the energy a cell needs to grow and replicate.

They then activated the nanoparticles inside the cancer cells by exposing them to a tissue-penetrating long wavelength laser light. Once activated, the nanoparticles disrupt the cancer cell's normal processes, eventually leading to its death.

The dead cancer cells were collected and exposed to dendritic cells, one of the core components of the human immune system. What the researchers saw was remarkable.

"We are able to potentially overcome some of the traditional drawbacks to today's dendritic cell immunotherapy," said Sean Marrache, a graduate student in Dhar's lab. "By targeting nanoparticles to the mitochondria of cancer cells and exposing dendritic cells to these activated cancer cells, we found that the dendritic cells produced a high concentration of chemical signals that they normally don't produce, and these signals have traditionally been integral to producing effective immune stimulation."

Dhar added that the "dendritic cells recognized the cancer as something foreign and began to produce high levels of interferon-gamma, which alerts the rest of the immune system to a foreign presence and signals it to attack. We basically used the cancer against itself."

She cautions that the results are preliminary, and the approach works only with certain forms of breast cancer. But if researchers can refine the process, this technology may one day serve as the foundation for a new cancer vaccine used to both prevent and treat disease.

"We particularly hope this technique could help patients with advanced metastatic disease that has spread to other parts of the body," said Dhar, who also is a member of the UGA Nanoscale Science and Engineering Center, Cancer Center and Center for Drug Discovery.

If the process were to become a treatment, doctors could biopsy a tumor from the patient and kill the cancerous cells with nanoparticles. They could then produce activated dendritic cells in bulk quantities in the lab under controlled conditions before the cells were injected into the patient.

Once in the bloodstream, the newly activated cells would alert the immune system to the cancer's presence and destroy it.

"These are the things we can now do with nanotechnology," Dhar said. "If we can refine the process further, we may be able to use similar techniques against other forms of cancer as well."

Besides Dhar and Marrache, other UGA researchers on the project were Smanla Tundup and Donald A. Harn. The work was supported by a startup grant from the National Institutes of Health (P30 GM 092378) to UGA, by the UGA Office of the Vice President for Research to Dhar and by a grant from the National Institutes of Health (NIH AI056484) to Harn.

####

For more information, please click here

Contacts:
Shanta Dhar

706-542-1012

Copyright © University of Georgia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

A full version of the paper is available at:

Chemistry, Department of:

Franklin College of Arts and Sciences:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Govt.-Legislation/Regulation/Funding/Policy

New imaging approach transforms study of bacterial biofilms August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Nanomedicine

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

New imaging approach transforms study of bacterial biofilms August 8th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project