Home > Press > UGA researchers use nanoparticles to fight cancer
Shanta Dhar, right, and Sean Marrache |
Abstract:
Researchers at the University of Georgia are developing a new treatment technique that uses nanoparticles to reprogram immune cells so they are able to recognize and attack cancer. The findings were published recently in the early online edition of ACS Nano.
The human body operates under a constant state of martial law. Chief among the enforcers charged with maintaining order is the immune system, a complex network that seeks out and destroys the hordes of invading bacteria and viruses that threaten the organic society as it goes about its work.
The immune system is good at its job, but it's not perfect. Most cancerous cells, for example, are able to avoid detection by the immune system because they so closely resemble normal cells, leaving the cancerous cells free to multiply and grow into life-threatening tumors while the body's only protectors remain unaware.
Shanta Dhar and her colleagues are giving the immune system a boost through their research.
"What we are working on is specifically geared toward breast cancer," said Dhar, the study's co-author and an assistant professor of chemistry in the UGA Franklin College of Arts and Sciences. "Our paper reports for the first time that we can stimulate the immune system against breast cancer cells using mitochondria-targeted nanoparticles and light using a novel pathway."
In their experiments, Dhar and her colleagues exposed cancer cells in a petri dish to specially designed nanoparticles 1,000 times finer than the width of a human hair. The nanoparticles invade the cell and penetrate the mitochondria—the organelles responsible for producing the energy a cell needs to grow and replicate.
They then activated the nanoparticles inside the cancer cells by exposing them to a tissue-penetrating long wavelength laser light. Once activated, the nanoparticles disrupt the cancer cell's normal processes, eventually leading to its death.
The dead cancer cells were collected and exposed to dendritic cells, one of the core components of the human immune system. What the researchers saw was remarkable.
"We are able to potentially overcome some of the traditional drawbacks to today's dendritic cell immunotherapy," said Sean Marrache, a graduate student in Dhar's lab. "By targeting nanoparticles to the mitochondria of cancer cells and exposing dendritic cells to these activated cancer cells, we found that the dendritic cells produced a high concentration of chemical signals that they normally don't produce, and these signals have traditionally been integral to producing effective immune stimulation."
Dhar added that the "dendritic cells recognized the cancer as something foreign and began to produce high levels of interferon-gamma, which alerts the rest of the immune system to a foreign presence and signals it to attack. We basically used the cancer against itself."
She cautions that the results are preliminary, and the approach works only with certain forms of breast cancer. But if researchers can refine the process, this technology may one day serve as the foundation for a new cancer vaccine used to both prevent and treat disease.
"We particularly hope this technique could help patients with advanced metastatic disease that has spread to other parts of the body," said Dhar, who also is a member of the UGA Nanoscale Science and Engineering Center, Cancer Center and Center for Drug Discovery.
If the process were to become a treatment, doctors could biopsy a tumor from the patient and kill the cancerous cells with nanoparticles. They could then produce activated dendritic cells in bulk quantities in the lab under controlled conditions before the cells were injected into the patient.
Once in the bloodstream, the newly activated cells would alert the immune system to the cancer's presence and destroy it.
"These are the things we can now do with nanotechnology," Dhar said. "If we can refine the process further, we may be able to use similar techniques against other forms of cancer as well."
Besides Dhar and Marrache, other UGA researchers on the project were Smanla Tundup and Donald A. Harn. The work was supported by a startup grant from the National Institutes of Health (P30 GM 092378) to UGA, by the UGA Office of the Vice President for Research to Dhar and by a grant from the National Institutes of Health (NIH AI056484) to Harn.
####
For more information, please click here
Contacts:
Shanta Dhar
706-542-1012
Copyright © University of Georgia
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
A full version of the paper is available at:
Franklin College of Arts and Sciences:
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||