Home > Press > NEI Corporation Completes Demonstration Project on Enhancing Energy Efficiency of Power Plant Condensers
Abstract:
NEI Corporation announced today that it has successfully completed a project on a hydrophobic surface treatment of steam condensers used in thermal power plants. The project, supported by the Electric Power Research Institute (EPRI), investigated application characteristics and evaluated customer incentives of a hydrophobic surface treatment technology that had been shown to lead to a 20% - 30% increase in the overall heat transfer coefficient. This was achieved by promoting dropwise condensation and breaking up the insulating condensate film commonly seen on untreated metal tubes in industrial condensers.
NEI demonstrated that its NANOMYTE® SuperCNTM hydrophobic surface treatment can be applied to the shell side of an existing, in-place exchanger with a flow coating method. In a test that simulated field insertion of condenser tubes, a minimum amount of scratches were observed on the coated 316 stainless steel tube, indicating the hydrophobic coating has excellent scratch resistance as well as lubricating properties.
Further, a durability study investigated the effect of prolonged testing on the life of the SuperCNTM hydrophobic coating. The coated tubes maintained a high degree of hydrophobicity after three months of durability testing, with alternating conditions of continuous condensation and ammonia vapor conditioning. The dropwise condensation phenomenon was maintained over the duration of the long-term testing.
Finally, an analysis of customer incentives for using SuperCNTM suggested that substantial savings could be realized from application of NEI's hydrophobic coating to surface condenser tubes. Project economics indicate NROI in excess of 100% with payback in less than one year.
The project was performed under the supervision of EPRI project managers Jose Marasigan and Richard Breckenridge. "While the concept of dropwise condensation has been around for a while, it has never been put in practice in the power industry. The key issue has been the inability to obtain a reliable means of long-lived dropwise condensation under industrial use conditions," Breckenridge said. "The NEI project shows that perhaps there is now a way to use a thin hydrophobic surface treatment to enhance the energy efficiency of steam condensers. The next step is to demonstrate the technology in an industrial-scale condenser."
"The funding from EPRI and the technical support provided by the EPRI managers have been a big help to NEI in advancing the state of the art of the SuperCNTM technology. It has enabled us to develop a practical approach for using SuperCNTM in the field," said Dr. Ganesh Skandan, CEO of NEI.
SuperCNTM hydrophobic coating can also be used to impart anti-fouling and easy-to-clean properties to metallic surfaces in other industrial applications. In particular, it has been shown that variants of the coating inhibit organic vapor and monomer deposition on metal surfaces.
####
About NEI Corporation
NEI Corporation is an application-driven company that utilizes nanotechnology to develop and produce advanced materials. The company’s core competencies are in synthesizing nanoscale
materials and prototyping products that incorporate the advanced materials. NEI offers an array of Advanced Protective Coatings for metal and polymer surfaces. The coatings have tailored functionalities such as anti- corrosion, self-healing, scratch resistance, ice-phobic, and self-cleaning.
For more information, please click here
Contacts:
Ms. Krista Martin
(732) 868‐3141
Copyright © NEI Corporation
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Appointments/Promotions/New hires/Resignations/Deaths
Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021
JEOL USA Welcomes New Managing Director, Hidetaka Sawada April 19th, 2021
The National Space Society Remembers Ben Bova : NSS Mourns the Loss of a Visionary NSS Leader December 2nd, 2020
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||