Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Elementary Physics in a Single Molecule

The molecule of about 2 nm in size is kept stable between two metal electrodes for several days.Figure: Christian Grupe/KIT
The molecule of about 2 nm in size is kept stable between two metal electrodes for several days.

Figure: Christian Grupe/KIT

Abstract:
A team of physicists has succeeded in performing an extraordinary experiment: They demonstrated how magnetism that generally manifests itself by a force between two magnetized objects acts within a single molecule. This discovery is of high significance to fundamental research and provides scientists with a new tool to better understand magnetism as an elementary phenomenon of physics. The researchers published their results in the latest issue of Nature Nanotechnology (doi: 10.1038/nnano.2013.133).

Elementary Physics in a Single Molecule

Karlsruhe, Germany | Posted on July 25th, 2013

The smallest unit of a magnet is the magnetic moment of a single atom or ion. If two of these magnetic moments are coupled, two options result: Either the magnetic moments add up to a stronger moment or they compensate each other and magnetism disappears. From the quantum physics point of view, this is referred to as a triplet or singlet. A team of researchers around Professor Mario Ruben from Karlsruhe Institute of Technology and Professor Heiko B. Weber from the Friedrich-Alexander-Universität Erlangen-Nürnberg now wanted to find out whether the magnetism of a pair of magnetic moments can be measured electrically in a single molecule.

For this purpose, the team headed by Mario Ruben used a customized molecule of two cobalt ions for the experiment. At Erlangen, Heiko B. Weber and his team studied the molecule in a so-called single-molecule junction. This means that two metal electrodes are arranged very closely to each other, such that the molecule of about 2 nm in length is kept stable between these electrodes for many days, while current through the junction can be measured. This experimental setup was then exposed to various, down to very deep, temperatures. The scientists found that magnetism can be measured in this way. The magnetic state in the molecule became visible as Kondo anomaly. This is an effect that makes electric resistance shrink towards deep temperatures.

It occurs only when magnetism is active and, hence, may be used as evidence. At the same time, the researchers succeeded in switching this Kondo effect on and off via the applied voltage. A precise theoretical analysis by the group of Assistant Professor Karin Fink from Karlsruhe Institute of Technology determines the various complex quantum states of the cobalt ion pair in more detail. Hence, the researchers succeeded in reproducing elementary physics in a single molecule.

Full bibliographic information

Switching of a coupled spin pair in a single-molecule junction, Stefan Wagner et al., Nature Nanotechnology (2013), doi: 10.1038/nnano.2013.133.

####

About Karlsruhe Institute of Technology
The Karlsruhe Institute of Technology (KIT) is the merger of the Forschungszentrum Karlsruhe, member of the Helmholtz Association, and the Universität Karlsruhe. This merger will give rise to an institution of internationally excellent research and teaching in natural and engineering sciences. In total, the KIT has 8000 employees and an annual budget of 700 million Euros. The KIT focuses on the knowledge triangle of research – teaching – innovation.

The Karlsruhe institution is a leading European energy research center and plays a visible role in nanosciences worldwide. KIT sets new standards in teaching and promotion of young scientists and attracts top scientists from all over the world. Moreover, KIT is a leading innovation partner of industry.

For more information, please click here

Contacts:
Monika Landgraf
Karlsruhe Institute of Technology
+49 721 608 47414

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

News and information

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

Discoveries

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Announcements

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Cambridge chemists discover simple way to build bigger molecules – one carbon at a time June 6th, 2025

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Quantum nanoscience

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

Unraveling the origin of extremely bright quantum emitters: Researchers from Osaka University have discovered the fundamental properties of single-photon emitters at an oxide/semiconductor interface, which could be crucial for scalable quantum technology February 28th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project