Home > Press > Novel Molecular Method to Diagnose Main Causes of Digestive Infections
Abstract:
A novel method based on nanobiotechnology was designed by biochemistry researchers from University of Tehran to rapidly and simply diagnose microorganisms, specially the main causes of digestive infections.
The method can be used in order to simply and rapidly diagnose and prevent the diseases in case of sudden outbreaks.
In this research, a novel molecular method based on nanobiotechnology was designed in order to quickly and simply detect microorganisms, specially salmonellosis pathogens and digestive infections. Diagnosis speed in this method is much faster than in similar methods, and the product is finally detected through the change in color without the need for any harmful device or chemicals. In addition, the novel method enjoys high sensitivity and desirable properties.
Among the results of the research, mention can be made of the application of nanoparticles in simple and cost-effective detection of microbes, obtaining technical knowledge for microbial diagnosis in a short period, molecular and color diagnosis of microorganisms based on nanoparticles (nanodiagnosis), compilation of a diagnosis method with unique properties and sensitivity, and applications in critical conditions (the outbreak of pathogens).
Results of the research have been published on 15 September 2013 in Biosensors and Bioelectronics, vol. 47. For more information about the details of the research, study the full paper on pages 231-236 on the same journal.
####
For more information, please click here
Copyright © Fars News Agency
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Nanomedicine
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||