Home > Press > Link between quantum physics and game theory found
Abstract:
While research tends to become very specialized and entire communities of scientists can work on specific topics with only a little overlap between them, physicist Dr Nicolas Brunner and mathematician Professor Noah Linden worked together to uncover a deep and unexpected connection between their two fields of expertise: game theory and quantum physics.
Dr Brunner said: "Once in a while, connections are established between topics which seem, on the face of it, to have nothing in common. Such new links have potential to trigger significant progress and open entirely new avenues for research."
Game theory -- which is used today in a wide range of areas such as economics, social sciences, biology and philosophy -- gives a mathematical framework for describing a situation of conflict or cooperation between intelligent rational players. The central goal is to predict the outcome of the process. In the early 1950s, John Nash showed that the strategies adopted by the players form an equilibrium point (so-called Nash equilibrium) for which none of the players has any incentive to change strategy.
Quantum mechanics, the theory describing the physics of small objects such as particles and atoms, predicts a vast range of astonishing and often strikingly counter-intuitive phenomena, such as quantum nonlocality. In the 1960s, John Stewart Bell demonstrated that the predictions of quantum mechanics are incompatible with the principle of locality, that is, the fact that an object can be influenced directly only by its immediate surroundings and not by distant events. In particular, when remote observers perform measurements on a pair of entangled quantum particles, such as photons, the results of these measurements are highly correlated. In fact, these correlations are so strong that they cannot be explained by any physical theory respecting the principle of locality. Hence quantum mechanics is a nonlocal theory, and the fact that Nature is nonlocal has been confirmed in numerous experiments.
In a paper published in Nature Communications, Dr Brunner and Professor Linden showed that the two above subjects are in fact deeply connected with the same concepts appearing in both fields. For instance, the physical notion of locality appears naturally in games where players adopt a classical strategy. In fact the principle of locality sets a fundamental limit to the performance achievable by classical players (that is, bound by the rules of classical physics).
Next, by bringing quantum mechanics into the game, the researchers showed that players who can use quantum resources, such as entangled quantum particles, can outperform classical players. That is, quantum players achieve better performance than any classical player ever could.
Dr Brunner said: "Such an advantage could, for instance, be useful in auctions which are well described by the type of games that we considered. Therefore, our work not only opens a bridge between two remote scientific communities, but also opens novel possible applications for quantum technologies."
####
For more information, please click here
Contacts:
Hannah Johnson
0044-117-928-8896
Copyright © University of Bristol
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Physics
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
New method cracked for high-capacity, secure quantum communication July 5th, 2024
Finding quantum order in chaos May 17th, 2024
Discoveries
Breaking carbon–hydrogen bonds to make complex molecules November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Research partnerships
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
Quantum nanoscience
Quantum researchers cause controlled ‘wobble’ in the nucleus of a single atom September 13th, 2024
Researchers observe “locked” electron pairs in a superconductor cuprate August 16th, 2024
Searching for dark matter with the coldest quantum detectors in the world July 5th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||