Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Link between quantum physics and game theory found

Abstract:
While research tends to become very specialized and entire communities of scientists can work on specific topics with only a little overlap between them, physicist Dr Nicolas Brunner and mathematician Professor Noah Linden worked together to uncover a deep and unexpected connection between their two fields of expertise: game theory and quantum physics.

Link between quantum physics and game theory found

Bristol, UK | Posted on July 12th, 2013

Dr Brunner said: "Once in a while, connections are established between topics which seem, on the face of it, to have nothing in common. Such new links have potential to trigger significant progress and open entirely new avenues for research."

Game theory -- which is used today in a wide range of areas such as economics, social sciences, biology and philosophy -- gives a mathematical framework for describing a situation of conflict or cooperation between intelligent rational players. The central goal is to predict the outcome of the process. In the early 1950s, John Nash showed that the strategies adopted by the players form an equilibrium point (so-called Nash equilibrium) for which none of the players has any incentive to change strategy.

Quantum mechanics, the theory describing the physics of small objects such as particles and atoms, predicts a vast range of astonishing and often strikingly counter-intuitive phenomena, such as quantum nonlocality. In the 1960s, John Stewart Bell demonstrated that the predictions of quantum mechanics are incompatible with the principle of locality, that is, the fact that an object can be influenced directly only by its immediate surroundings and not by distant events. In particular, when remote observers perform measurements on a pair of entangled quantum particles, such as photons, the results of these measurements are highly correlated. In fact, these correlations are so strong that they cannot be explained by any physical theory respecting the principle of locality. Hence quantum mechanics is a nonlocal theory, and the fact that Nature is nonlocal has been confirmed in numerous experiments.

In a paper published in Nature Communications, Dr Brunner and Professor Linden showed that the two above subjects are in fact deeply connected with the same concepts appearing in both fields. For instance, the physical notion of locality appears naturally in games where players adopt a classical strategy. In fact the principle of locality sets a fundamental limit to the performance achievable by classical players (that is, bound by the rules of classical physics).

Next, by bringing quantum mechanics into the game, the researchers showed that players who can use quantum resources, such as entangled quantum particles, can outperform classical players. That is, quantum players achieve better performance than any classical player ever could.

Dr Brunner said: "Such an advantage could, for instance, be useful in auctions which are well described by the type of games that we considered. Therefore, our work not only opens a bridge between two remote scientific communities, but also opens novel possible applications for quantum technologies."

####

For more information, please click here

Contacts:
Hannah Johnson

0044-117-928-8896

Copyright © University of Bristol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: 'Connection between Bell nonlocality and Bayesian game theory' by Nicolas Brunner and Noah Linden in Nature Communications:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Physics

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Quantum computers simulate fundamental physics: shedding light on the building blocks of nature June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Magnetism in new exotic material opens the way for robust quantum computers June 4th, 2025

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Research partnerships

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

INRS and ELI deepen strategic partnership to train the next generation in laser science:PhD students will benefit from international mobility and privileged access to cutting-edge infrastructure June 6th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025

Quantum nanoscience

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

A new study provides insights into cleaning up noise in quantum entanglement:When it comes to purifying quantum entanglement, new theoretical work highlights the importance of tailoring noise-minimizing solutions to specific quantum systems May 16th, 2025

Superconductors: Amazingly orderly disorder: A surprising effect was discovered through a collaborative effort by researchers from TU Wien and institutions in Croatia, France, Poland, Singapore, Switzerland, and the US during the investigation of a special material: the atoms are May 14th, 2025

Programmable electron-induced color router array May 14th, 2025

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project