Home > Press > Nanomaterial to help reduce CO2 emissions
Abstract:
University of Adelaide researchers have developed a new nanomaterial that could help reduce carbon dioxide emissions from coal-fired power stations.
The new nanomaterial, described in the Journal of the American Chemical Society, efficiently separates the greenhouse gas carbon dioxide from nitrogen, the other significant component of the waste gas released by coal-fired power stations. This would allow the carbon dioxide to be separated before being stored, rather than released to the atmosphere.
"A considerable amount of Australia's - and the world's - carbon dioxide emissions come from coal-fired power stations," says Associate Professor Christopher Sumby, project leader and ARC Future Fellow in the University's School of Chemistry and Physics.
"Removing CO2 from the flue gas mixture is the focus of a lot of research. Most of Australia's energy generation still comes from coal. Changing to cleaner energies is not that straightforward but, if we can clean up the emissions, we've got a great stop-gap technology."
The researchers have produced a new absorbent material, called a 'metal-organic framework', which has "remarkable selectivity" for separating CO2 from nitrogen.
"It is like a sponge but at a nanoscale," says Associate Professor Sumby. "The material has small pores that gas molecules can fit into - a CO2 molecule fits but a nitrogen molecule is slightly too big. That's how we separate them."
Other methods of separating CO2 from nitrogen are energy-intensive and expensive. This material has the potential to be more energy efficient. It's easy to regenerate (removing the CO2) for reuse, with small changes in temperature or pressure.
"This material could be used as it is but there are probably smarter ways to implement the benefits," says Associate Professor Sumby.
"One of the next steps we're pursuing is taking the material in powder form and dispersing it in a membrane. That may be more practical for industrial use."
The project is funded by the Science Industry Endowment Fund and is a collaboration between researchers in the Centre of Advanced Nanomaterials, in the School of Chemistry and Physics, and the CSIRO.
####
For more information, please click here
Contacts:
Christopher Sumby
61-468-776-825
Copyright © University of Adelaide
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Govt.-Legislation/Regulation/Funding/Policy
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors January 17th, 2025
Chainmail-like material could be the future of armor: First 2D mechanically interlocked polymer exhibits exceptional flexibility and strength January 17th, 2025
Discoveries
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Announcements
Closing the gaps — MXene-coating filters can enhance performance and reusability February 28th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
Environment
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
New method in the fight against forever chemicals September 13th, 2024
Energy
KAIST researchers introduce new and improved, next-generation perovskite solar cell November 8th, 2024
Unveiling the power of hot carriers in plasmonic nanostructures August 16th, 2024
Groundbreaking precision in single-molecule optoelectronics August 16th, 2024
Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024
Research partnerships
SMART researchers pioneer first-of-its-kind nanosensor for real-time iron detection in plants February 28th, 2025
Gene therapy relieves back pain, repairs damaged disc in mice: Study suggests nanocarriers loaded with DNA could replace opioids May 17th, 2024
Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024
Researchers’ approach may protect quantum computers from attacks March 8th, 2024
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |