Home > Press > The Materials Project of Lawrence Berkeley National Laboratory and MIT highlighted at the White House
Abstract:
On June 24, the White House Office of Science and Technology Policy highlighted the Materials Genome Initiative (MGI), a public-private endeavor launched by the President which aims to cut in half the time it takes to develop novel materials that can fuel advanced manufacturing and bolster the 21st century American economy.  The Materials Project - an open-access Google-like data base for materials research — was co-founded by Lawrence Berkeley National Laboratory (Berkeley Lab) and the Massachusetts Institute of Technology (MIT). The Project was recently awarded one of the DOE-funded MGI Centers to include several new partner institutions and broaden its scope.
The Materials Project relies on the National Energy Research Scientific Computing Center (NERSC) at the Berkeley Lab to perform high-throughput calculations and determine state-of-the-art electronic structures, as well as use novel data-mining algorithms to predict surface, defect, electronic and finite temperature properties of tens of thousands of inorganic compounds.
The project is unique in its ambition to computationally determine the properties of all known inorganic compounds, deliver the data to the Materials community, and to enable improved materials and design. The Materials Project currently features over 30,000 materials in its data base and now has over 4,000 users from industry, government and academia. What used to require days or weeks of scouring journal articles or performing custom calculations can now be achieved at the click of a mouse.
####
For more information, please click here
Contacts:
Dr. Kristin Persson
Copyright © Berkeley Lab
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
| Related News Press | 
News and information
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
Laboratories
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
Govt.-Legislation/Regulation/Funding/Policy
    New imaging approach transforms study of bacterial biofilms August 8th, 2025
    Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Materials/Metamaterials/Magnetoresistance
    First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
    Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025
    A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
    Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
Announcements
    Rice membrane extracts lithium from brines with greater speed, less waste October 3rd, 2025
    Researchers develop molecular qubits that communicate at telecom frequencies October 3rd, 2025
    Next-generation quantum communication October 3rd, 2025
    "Nanoreactor" cage uses visible light for catalytic and ultra-selective cross-cycloadditions October 3rd, 2025
| 
			 | 
	||
| 
			 | 
	||
| The latest news from around the world, FREE | ||
| 
			 | 
	||
| 
			 | 
	||
| Premium Products | ||
| 
			 | 
	||
| 
			Only the news you want to read! 
			 Learn More  | 
		||
| 
			 | 
	||
| 
			Full-service, expert consulting 
			 Learn More  | 
		||
| 
			 | 
	||