Home > Press > The Materials Project of Lawrence Berkeley National Laboratory and MIT highlighted at the White House
Abstract:
On June 24, the White House Office of Science and Technology Policy highlighted the Materials Genome Initiative (MGI), a public-private endeavor launched by the President which aims to cut in half the time it takes to develop novel materials that can fuel advanced manufacturing and bolster the 21st century American economy. The Materials Project - an open-access Google-like data base for materials research — was co-founded by Lawrence Berkeley National Laboratory (Berkeley Lab) and the Massachusetts Institute of Technology (MIT). The Project was recently awarded one of the DOE-funded MGI Centers to include several new partner institutions and broaden its scope.
The Materials Project relies on the National Energy Research Scientific Computing Center (NERSC) at the Berkeley Lab to perform high-throughput calculations and determine state-of-the-art electronic structures, as well as use novel data-mining algorithms to predict surface, defect, electronic and finite temperature properties of tens of thousands of inorganic compounds.
The project is unique in its ambition to computationally determine the properties of all known inorganic compounds, deliver the data to the Materials community, and to enable improved materials and design. The Materials Project currently features over 30,000 materials in its data base and now has over 4,000 users from industry, government and academia. What used to require days or weeks of scouring journal articles or performing custom calculations can now be achieved at the click of a mouse.
####
For more information, please click here
Contacts:
Dr. Kristin Persson
Copyright © Berkeley Lab
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Beyond wires: Bubble technology powers next-generation electronics:New laser-based bubble printing technique creates ultra-flexible liquid metal circuits November 8th, 2024
Nanoparticle bursts over the Amazon rainforest: Rainfall induces bursts of natural nanoparticles that can form clouds and further precipitation over the Amazon rainforest November 8th, 2024
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Laboratories
A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024
NRL discovers two-dimensional waveguides February 16th, 2024
Govt.-Legislation/Regulation/Funding/Policy
New discovery aims to improve the design of microelectronic devices September 13th, 2024
Physicists unlock the secret of elusive quantum negative entanglement entropy using simple classical hardware August 16th, 2024
Single atoms show their true color July 5th, 2024
Materials/Metamaterials/Magnetoresistance
Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024
Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024
Announcements
Nanotechnology: Flexible biosensors with modular design November 8th, 2024
Exosomes: A potential biomarker and therapeutic target in diabetic cardiomyopathy November 8th, 2024
Turning up the signal November 8th, 2024
Nanofibrous metal oxide semiconductor for sensory face November 8th, 2024
The latest news from around the world, FREE | ||
Premium Products | ||
Only the news you want to read!
Learn More |
||
Full-service, expert consulting
Learn More |
||