Home > Press > SEMATECH Advances Device Processing Techniques to Enable III-V Manufacturing: Results show significant progress in developing a low-cost process technology to deposit III-Vs on top of silicon
![]() |
Abstract:
SEMATECH announced today that researchers have made significant advances in post-epitaxial growth backside clean processing that will prepare III-V technology for high-volume manufacturing. The research leading to these accomplishments was conducted at SEMATECH's facilities at the College of Nanoscale Science and Engineering (CNSE) in Albany, NY.
Following a two-year effort to improve process parameters and validating III-V on 200 mm Si VLSI process flows, technologists have identified the key mechanisms to enable a robust backside cleaning process and made significant progress in reducing the likelihood of process cross-contamination that could impact a high-volume manufacturing line. This important milestone was presented during SEMATECH's Surface Preparation and Cleaning Conference held recently in Austin, Texas.
Furthermore, SEMATECH has developed systematic experiments to identify the key mechanisms of backside contamination, which were then used to engineer robust backside clean process using standard high-volume manufacturing toolsets. At the same time, researchers assessed the environmental, safety and health (ESH) risks of applying and processing compound semiconductor films on silicon dioxide wafers.
"In order to drive cost-effective compliance solutions, SEMATECH is developing new testing and analysis methodologies to evaluate ESH impacts of novel materials," said Hsi-An Kwong, SEMATECH's ESH Technology Center program manager. "After conducting a process analysis of III-V manufacturing line, we were able to identify potential ESH risks, including generation of arsine and arsenic compounds, and develop protocols to help mitigate the impact to environment and safety."
Supported by the conventional Si CMOS processing capabilities of CNSE, SEMATECH researchers are now working jointly with chipmakers, equipment and materials suppliers and universities on the ESH and contamination challenges of processing III-V materials in a 300 mm fab in order to enable safe implementation of III-V technology for high-volume manufacturing.
III-V compound semiconductors are considered valid candidates as building blocks for the implementation of high-performance, low-power logic devices beyond the 10 nm technology node. To be truly competitive, III-V based technology must be monolithically integrated with Si in order to benefit from the existing Si-based semiconductor processing. For successful introduction into a Si manufacturing line, hetero-integrated III-V on Si wafers must be processed with a backside clean and capping processes.
"Through the success of our research and development efforts, SEMATECH is developing manufacturable solutions and practical implementation approaches to enable the fabrication of logic devices and systems on chips with diverse and improved functionalities," said Paul Kirsch, director of Front End Processes (FEP) at SEMATECH.
For over half a century, silicon-based materials have been the basic layers used in the manufacturing of CMOS transistors; however, these staple materials, as well as materials derived from silicon such as insulators and contact metals, are reaching their limits as the industry looks to lower power dissipation in CMOS devices and as scaling approaches the physical limits of silicon transistors. SEMATECH's FEP program is exploring innovative materials, new transistor structures and alternative non-volatile memories to address key aspects of system-level performance, power, variability and cost to help accelerate innovation in the continued scaling of logic and memory applications.
"The backside clean step is a key component of successful introduction of III-V material to a 300 mm high-volume manufacturing line," said Chris Hobbs, SEMATECH's FEP program manager. "Success at this step is critical to ensure contamination control through subsequent toolsets."
####
About SEMATECH
For over 25 years, SEMATECH®, the international consortium of leading semiconductor device, equipment, and materials manufacturers, has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Through our unwavering commitment to foster collaboration across the nanoelectronics industry, we help our members and partners address critical industry transitions, drive technical consensus, pull research into the industry mainstream, improve manufacturing productivity, and reduce risk and time to market. Information about SEMATECH can be found at www.sematech.org. Twitter: www.twitter.com/sematech
For more information, please click here
Contacts:
Erica McGill
SEMATECH
Marketing Communications
O: 518-649-1041
Copyright © SEMATECH
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Chip Technology
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025
Programmable electron-induced color router array May 14th, 2025
Enhancing power factor of p- and n-type single-walled carbon nanotubes April 25th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Events/Classes
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
Alliances/Trade associations/Partnerships/Distributorships
Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022
University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022
Research partnerships
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
HKU physicists uncover hidden order in the quantum world through deconfined quantum critical points April 25th, 2025
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |