Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Improved synthesis of graphene oxide and its application to nanocomposites

Fig. 1. Promising applications of graphene oxide
Fig. 1. Promising applications of graphene oxide

Abstract:
Research Core for Interdisciplinary Sciences
Assistant Professor, Yuta Nishina

We have developed a method for the rapid preparation of graphene oxide (GO)—a strategically important material for future technology (Fig.1).

The most common method for synthesizing GO is the Hummers' method (oxidation with KMnO4 and NaNO3 in concentrated H2SO4), which requires a long reaction time and large amounts of reagents. In our research found that the microwave irradiation of natural graphite flakes before the oxidation step improved the efficiency of the oxidation process. This facile method provides a greater amount of GO compared with the original Hummers' method. We expect our rapid synthesis method based on microwave irradiation to make a major contribution to the large-scale production of GO.

Improved synthesis of graphene oxide and its application to nanocomposites

Okayama, Japan | Posted on June 20th, 2013

Patent information: Japanese patent No.5098064

Graphene is a promising support material for Pt nanoparticles, which triggered much interest in metal/graphene composites. In some cases, however, graphene-supported metal species are not preferred, because the interaction between the metal particles and graphene is quite weak due to the graphene itself is being relatively chemically inert due to the strong sp2 and π binding between carbon atoms in the graphene plane. Consequently, the metal nanoparticles are mobile on graphene, which leads to limited applications of metal/graphene composites. It has been proposed that defects or mechanical strain in graphene can significantly increase the chemical reactivity of graphene itself and also enhance the interaction between metal nanoparticles.

Therefore, GO offers significant advantages for the synthesis of composites with inorganic materials and organic polymers due to its large amounts of oxygen functionality. As an application of our GO, metal nanoparticles were supported on its surface. We succeeded to synthesize Pt, Pd, Rh, Ir, Cu, etc. nanoparticles on GO via solution processes. Controlling the degree of oxidation of GO and the oxidation state of metal species will offer a wide range of applications of metal/GO composites such as electrodes, fuel cell catalysts, and catalysts for chemical synthesis. We showed that the Pd/GO composite exhibited superior catalytic activity in selective hydrogenation and cross coupling reactions.

Japanese patent application No.2012-201088

####

About Okayama University
Okayama University is one of the largest comprehensive universities in Japan with roots going back to the Medical Training Place sponsored by the Lord of Okayama and established in 1870. Now with 1,300 faculty and 14,000 students, the University offers courses in specialties ranging from medicine and pharmacy to humanities and physical sciences. Okayama University is located in the heart of Japan approximately 3 hours west of Tokyo by Shinkansen.

For more information, please click here

Contacts:
Okayama University
1-1-1 Tsushima-naka , Kita-ku ,
Okayama 700-8530, Japan
Planning and Public Information Division

Copyright © Okayama University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Assistant Professor Yuta Nishina website:

Related News Press

News and information

New class of protein misfolding simulated in high definition: Evidence for recently identified and long-lasting type of protein misfolding bolstered by atomic-scale simulations and new experiments August 8th, 2025

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025

Graphene/ Graphite

Electrifying results shed light on graphene foam as a potential material for lab grown cartilage June 6th, 2025

UCF researcher discovers new technique for infrared “color” detection and imaging: The new specialized tunable detection and imaging technique for infrared photons surpasses present technology and may be a cost-effective method of capturing thermal imaging or night vision, medica December 13th, 2024

Breakthrough in proton barrier films using pore-free graphene oxide: Kumamoto University researchers achieve new milestone in advanced coating technologies September 13th, 2024

A 2D device for quantum cooling:EPFL engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technol July 5th, 2024

Discoveries

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

New molecular technology targets tumors and simultaneously silences two ‘undruggable’ cancer genes August 8th, 2025

Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025

Materials/Metamaterials/Magnetoresistance

First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025

Researchers unveil a groundbreaking clay-based solution to capture carbon dioxide and combat climate change June 6th, 2025

A 1960s idea inspires NBI researchers to study hitherto inaccessible quantum states June 6th, 2025

Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025

Announcements

Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025

Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025

Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025

ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project