Home > Press > Beating the Diffraction Limit by 1000X – An introduction to nanoscale IR imaging on Bruker AFMs with applications in graphene
![]() |
Abstract:
Atomic Force Microscopy is a versatile method enabling nanoscale mapping of a material's 3D surface, mechanical properties or even electrical conductivity. In addition to these already powerful imaging modes, AFM researchers continue to actively develop more capabilities which add additional layers of information.
In this webinar we provide an introduction to a particularly powerful capability recently implemented by researchers on our AFMs: the ability to perform nanoscale IR imaging of materials using a technique called scattering Scanning Nearfield Optical Microscopy (sSNOM). The XY resolution of sSNOM IR images surpasses 10nm beating the diffraction limit of conventional IR microscopes by as much as 1000X. We will go over the basic physics behind this and show how this technique can be used in much the same way as conventional IR microscopy to identify materials by their molecular resonances, now at the nanoscale. Additionally, IR sSNOM is capable of making measurements that are impossible with conventional IR due to the highly confined nature of the IR light used to probe the material. The most striking example of IR sSNOM's unique capabilities is the ultrahigh contrast imaging of the thinnest material known to man: Graphene. From the IR sSNOM images one can clearly discern and reproducibly count the number of Graphene layers when using IR frequencies in the universal conductivity regime of Graphene. In the plasmonic regime, we demonstrate that the sharpness of the AFM probe creates spatial frequencies sufficiently high to launch 2D nanoplasmons in the Graphene layers.
DATE & TIME:
June 27, 2013 8AM PDT https://www2.gotomeeting.com/register/176082466
June 27, 2013 7PM PDT https://www2.gotomeeting.com/register/829847954
####
For more information, please click here
Contacts:
Tracy Krainer
Marketing Communications Coordinator
Bruker Nano Surfaces Division
112 Robin Hill Road
Santa Barbara, CA 93117
Phone: +1 805-967-1400 x2227
Copyright © Bruker Nano Surfaces Division
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related News Press |
News and information
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Lab to industry: InSe wafer-scale breakthrough for future electronics August 8th, 2025
Imaging
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Simple algorithm paired with standard imaging tool could predict failure in lithium metal batteries August 8th, 2025
First real-time observation of two-dimensional melting process: Researchers at Mainz University unveil new insights into magnetic vortex structures August 8th, 2025
Announcements
Sensors innovations for smart lithium-based batteries: advancements, opportunities, and potential challenges August 8th, 2025
Deciphering local microstrain-induced optimization of asymmetric Fe single atomic sites for efficient oxygen reduction August 8th, 2025
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
ICFO researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials August 8th, 2025
Tools
Japan launches fully domestically produced quantum computer: Expo visitors to experience quantum computing firsthand August 8th, 2025
Rice researchers harness gravity to create low-cost device for rapid cell analysis February 28th, 2025
New 2D multifractal tools delve into Pollock's expressionism January 17th, 2025
Events/Classes
Institute for Nanoscience hosts annual proposal planning meeting May 16th, 2025
A New Blue: Mysterious origin of the ribbontail ray’s electric blue spots revealed July 5th, 2024
Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |